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Abstract—We study the Gaussian many-to-one interference
network which is a special case of general interference network,
where only one receiver experiences interference. We allow
transmission of messages on all the links of the network. This
communication model is different from the corresponding many-
to-one interference channel. We formulate three transmission
strategies for the above network, which involve using Gaussian
codebooks and treating interference from a subset of the trans-
mitters as noise. We use sum-rate as the criterion of optimality
for evaluating the strategies. For the first two strategies, we
characterize the sum-rate capacity under certain channel con-
ditions, while for the other strategy, we derive a sum-rate outer
bound and characterize the gap between the outer bound and
the achievable sum-rate of the strategy. Finally, we illustrate the
regions where the derived channel conditions are satisfied for
each strategy.

keywords: many-to-one interference network, interference channel, sum

capacity.
I. INTRODUCTION

The Interference Network is a multi-terminal communi-
cation network introduced by Carleial [1], consisting of M
transmitters and N receivers, where each transmitter has an
independent message for each of the 2N − 1 possible non-
empty subsets of the receivers. The multiple access channel
(MAC), broadcast channel, interference channel (IC), and X
channel are all special cases of the Interference network (IN).

The interference channel has been studied extensively. Al-
though the capacity region of the IC is unknown, several inner
and outer bounds for the capacity region and sum-rate capacity
have been derived in [2]–[4]. In [5]–[7], sum-rate capacity of
the IC is characterized in the low-interference regime: a regime
where using Gaussian inputs and treating interference as noise
is optimal. This result is extended to the X channel in [8].

The many-to-one interference network is a special case of
general interference network, where only one receiver experi-
ences interference. The system model is shown in Fig. 1. We
allow transmission of messages on all the links of the network.
The communication model assumes that each transmitter Tx i,
excluding the first has two independent messages, one for its
corresponding receiver Rx i, and the other to receiver 1. Such
a communication scheme has not been studied before.

The many-to-one interference channel is a special case of
the many-to-one IN, where each transmitter (Tx i) is only
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Fig. 1. Many-to-one interference network with 3 transmitters in standard
form.
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Fig. 2. Illustration of many-to-one interference network in cellular uplink.

interested in communicating with its corresponding receiver
(Rx i), i.e., each transmitter has only one message. The many-
to-one IC is studied in [7,9]–[11]. In [7,9], sum-rate capacity
of the many-to-one IC is characterized in the low-interference
regime. In [10], the capacity region is characterized to within
a constant number of bits. The generalized degrees of freedom
of the channel is obtained in [10,11].

We study the more general many-to-one interference net-
work with messages on all the links. Interference networks
with messages to all possible receivers could also be used
in half-duplex relay networks. See [12] for examples of such
networks used in optimization of unicast information flow in
multistage decode-and-forward relay networks.

The many-to-one IN can also occur as a communication
model both in cellular uplink and downlink as we show below.
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Fig. 3. Applicability of many-to-one interference network in cellular
downlink.

No. Strategy

M1 All transmitters transmit to their corresponding re-
ceivers and interference at receiver 1 is treated as noise.

M2 A subset of transmitters form a MAC at receiver 1,
while interference from other transmitters is treated as
noise.

M3 All transmitters form a MAC at receiver 1.

TABLE I
TRANSMISSION STRATEGIES FOR MANY-TO-ONE IN

In cellular uplink, consider the illustration in Fig. 2, where user
1 is within the communication range of base station (BS) 1,
whereas users 2 and 3 are at the cell edges of their respective
BSs and have the option to either uplink to their respective
BSs or to BS 1 if the channel conditions are conducive. In a
reverse of the uplink model, in cellular downlink, user 1 is at
the cell edge and receives transmission from the nearby BSs
along with BS 1, while BS 2 and BS 3 communicate with their
respective receivers. This communication system is illustrated
in Fig. 3

Allowing messages on the cross links leads to some in-
teresting scenarios. Each transmitter excluding the first, can
now make a choice, either transmit to its own corresponding
receiver, or transmit to receiver 1, or both. Instead of finding
outer and inner bounds to the capacity region of the many-
to-one IN, we focus on practical transmission scenarios. We
define the transmission strategies for this network in Table I.
All strategies involve using Gaussian codebooks and treating
interference from a subset of transmitters as noise at receiver
1. Thus, in strategy M1, all transmitters except the first cause
interference at receiver 1, while in strategy M3, receiver 1
does not experience any interference

The sum-rate at all the receivers is used as the criterion for
optimality. For strategies M1 and M2, we characterize the
sum-rate capacity under certain channel conditions, and for
strategy M3, we characterize the gap between the achievable
sum-rate of the strategy and a sum-rate outer bound.

II. SYSTEM MODEL

The many-to-one IN with 3 transmitters is characterized by
the following input-output equations written in standard form
[1], i.e.,

y1 = x1 + ax2 + bx3 + n1 (1)
y2 = x2 + n2 (2)
y3 = x3 + n3, (3)

where xt is1 the transmitted symbol by transmitter t, the cross
channels from transmitters 2 and 3 to receiver 1 are a and b,
respectively, and nr is the additive complex Gaussian noise at
the receivers. The additive noise nr is a circularly symmetric
complex Gaussian (CSCG) random variable with unit variance,
i.e., nr ∼ CN (0, 1), r = 1, 2, 3.

As shown in Fig. 1, the 3-transmitter many-to-one IN has
five independent messages, W11, W12, W13, W22 and W33,
where Wij is the message transmitted from transmitter j
to receiver i. Transmitter t is subject to a power constraint
E[|xt|2] ≤ Pt.

III. ANALYSIS OF DIFFERENT STRATEGIES FOR
3-TRANSMITTER MANY-TO-ONE INTERFERENCE

NETWORK

We introduce some terminology useful in deriving the
results in this section. Let yn

i denote the vector of received
symbols of length n at receiver i. Let xn

i denote the n length
vector of transmitted symbols at transmitter i. By Fano’s
inequality, we have

H(Wii |yn
i ) ≤ nεn, i = 1, 2, 3

H(W1j |yn
1 ) ≤ nεn, j = 2, 3, (4)

where εn → 0 as n→∞.
Before we proceed to analyze the various strategies , we

provide a restatement of Lemma 5 in [7], in a form that is
easier to apply to many-to-one interference networks. We make
use of the following lemma to bound the sum-rate of many-
to-one interference network in some cases.

Lemma 1. Let wn
i be a complex sequence with average

power constraint trace(E(wn
i w

nH
i )) ≤ nPi. Let nn

i be a
complex random vector with components that are distributed
as independent CN (0, 1) random variables. Assume that wn

i

are independent of each other and also independent on nn
i . Let

wiG ∼ CN (0, Pi). For some complex constants ci, we have,

K∑
i=1

h(wn
i + nn

i )− h(

K∑
i=1

ciw
n
i + nn

1 ) ≤

n

K∑
i=1

h(wiG + ni)− nh(

K∑
i=1

ciwiG + n1), (5)

1We use the following notation: lowercase letters for scalars, boldface
lowercase letters for vectors, and calligraphic letters for sets. [·]T denotes the
transpose operation, [·]H denotes the Hermitian operation, trace(·) denotes
the trace operation, and E{·} denotes the expectation operation.
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when
∑K

i=1 |ci|2 ≤ 1 and equality is achieved if wn
i = wn

iG,
where wn

iG denotes a complex random vector with components
that are i.i.d CN (0, Pi).

Proof: Let tni = ci(w
n
i + nn

i ). The left-hand side of (5)
can now be written as

K∑
i=1

h(tni )− h(

K∑
i=1

tni + ñn
1 ) + n

K∑
i=1

log |ci|2,

where ñn
1 is a complex random vector with components that

are i.i.d CN (0, 1 −
∑K

i=1 |ci|2). The final result follows by
applying Lemma 5 in [7], i.e.,

K∑
i=1

h(tni )−h(

K∑
i=1

tni + ñn
1 ) ≤ n

K∑
i=1

h(tiG)−nh(

K∑
i=1

tiG + ñ1),

where tiG = ci(wiG + ni) and equality is achieved if wn
i =

wn
iG. Since the variance of ñ1 cannot be negative, we have

the condition
∑K

i=1 |ci|2 ≤ 1.

A. Optimality of Strategy M1

Here, we are interested in a region where the transmitters
use Gaussian inputs to communicate with their respective
receivers and interference at receiver 1 is treated as noise. This
is usually referred to in the interference channel literature as
the low-interference or the noisy-interference regime.

Theorem 1. The sum-rate capacity is achieved by transmitting
on the direct channels and treating interference as noise when
|a|2 + |b|2 ≤ 1.

Proof: If |b|2 ≤ 1, we have I(W13 ; yn
3 ) ≥

I(W13 ; yn
1 |xn

1 ,x
n
2 ). Therefore,

H(W13 |yn
3 ) ≤ H(W13 |yn

1 , x
n
1 ,x

n
2 )

(a)

≤ H(W13 |yn
1 ) ≤ nεn, (6)

where (a) follows since removing conditioning does not
reduce the conditional entropy. Thus, we conclude that W13 is
decodable at receiver 3 when |b|2 ≤ 1. Note that in this case

h(xn
3 |yn

3 ) = H(W33 |yn
3 ) +H(W13 |yn

3 ,W33)

≤ H(W33 |yn
3 ) +H(W13 |yn

3 )

≤ 2nεn, (7)

where (7) follows from (4) and (6).
Similarly, it can be shown that when |a|2 ≤ 1, W12 is

decodable at receiver 2 and h(xn
2 |yn

2 ) ≤ 2nεn. This means
that we can set W12 = W13 = φ (without loss of sum-rate).
Thus, we have shown that the presence of cross messages
does not improve the sum-rate when |a|2 ≤ 1, |b|2 ≤ 1. Now,
assume that |a|2 ≤ 1 and |b|2 ≤ 1. The sum-rate can be

bounded as follows

nS ≤ H(W11) +H(W12,W22) +H(W13,W33)

= I(xn
1 ;yn

1 ) + I(xn
2 ;yn

2 ) + I(xn
3 ;yn

3 ) +

3∑
i=1

h(xn
i |yn

i )

≤ h(yn
1 )− h(axn

2 + bxn
3 + nn

1 ) + h(xn
2 + nn

2 )− h(nn
2 )

+h(xn
3 + nn

3 )− h(nn
3 ) + 3εn

(c)

≤ nh(y1G) + nh(x2G + n2) + nh(x3G + n3)

−nh(ax2G + bx3G + n1)− nh(n2)− nh(n3) + 3εn

= nI(x1G; y1G) + nI(x2G; y2G) + nI(x3G; y3G) + 3εn,

where xiG ∼ CN (0, Pi), yiG denotes yi with xj = xjG,
∀ i, j, and in (c), we have used Lemma 1 to bound the term
h(xn

2 + nn
2 ) + h(xn

3 + nn
3 ) − h(axn

2 + bxn
3 + nn

1 ), under the
condition |a|2 + |b|2 ≤ 1. As n→∞, εn → 0, we have

S ≤ log

(
1 +

P1

1 + |a|2P2 + |b|2P3

)
+

3∑
i=2

log(1 + Pi).

Remark 1. Theorem 1 was proved for the many-to-one inter-
ference channel in [7, Theorem 4] using genie aided bounding
techniques.

B. Optimality of Strategy M2

We ask the following question: Are there channel conditions
such that the sum-rate capacity is achieved by a two-user MAC
at receiver 1 formed by transmitter 1 and either transmitter 2 or
transmitter 3, while the interference from the other transmitter
is treated as noise? Observe that the other transmitter forms a
point-to-point channel and is a source of interference for the
two-user MAC. We characterize the sum-rate capacity in the
following theorem.
Theorem 2. The sum-rate capacity is achieved by the two-
user MAC formed by transmitter 1 and either transmitter 2 or
transmitter 3 to receiver 1, for the following two sub-regions
of the many-to-one interference region, respectively.

(i) |a| ≥ 1 + |b|2P3√
1− |b|2

, |b| ≤ 1

(ii) |b| ≥ 1 + |a|2P2√
1− |a|2

, |a| ≤ 1.

Proof: We prove statement (i) below. This represents the
case where transmitters 1 and 2 form a MAC at receiver 1
while interference from receiver 3 is treated as noise. The
proof for the second statement follows along similar lines.

We use genie-aided bounding techniques to derive the
optimality of strategy M2. Specifically, we use the concept
of useful genie and smart genie introduced in [7] to obtain the
sum-rate capacity for strategy M2. Let a genie provide the
following side information to receiver 1:

s1 = x1 + a x2 + η z1, (8)

where z1 ∼ CN (0, 1) and η is a positive real number. We
allow z1 to be correlated to n1 with correlation coefficient ρ.
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A genie is said to be useful if it results in a genie-aided
channel whose sum-rate capacity is achieved by Gaussian
inputs, i.e., the sum-rate capacity of the genie-aided channel
equals I(x1G, x2G ; y1G, s1G) + I(x3G ; y3G), where xiG ∼
CN (0, Pi), yiG, s1G are yi and s1 with xj = xjG, ∀ i, j.
Lemma 2. (Useful Genie) The sum-rate capacity of the genie-
aided channel with side information (8) given to receiver 1 is
achieved by using Gaussian inputs and by treating interference
as noise at receiver 1, if the following conditions hold:

η2 ≤ |a|2, |b|2 ≤ 1− |ρ|2, (9)

and the sum-rate of the genie-aided channel is bounded as

S ≤ I(x1G, x2G ; y1G, s1G) + I(x3G ; y3G). (10)

Proof: The sum-rate of the genie-aided channel can be
bounded as

nS ≤ H(W11,W12,W22) +H(W13,W33)

= I(W11,W12,W22 ; yn
1 , s

n
1 ) +H(W11 |yn

1 , s
n
1 )

+H(W12 |yn
1 , s

n
1 ,x

n
1 ) + H(W22 |yn

1 , s
n
1 ,x

n
1 ,W12)

+I(W13,W33;yn
3 )+H(W13|yn

3 )+H(W33|yn
3 ,W13)

(a)

≤ I(xn
1 , x

n
2 ; yn

1 , s
n
1 ) + h(xn

1 |yn
1 ) + H(W12 |yn

1 )

+H(W22 | sn1 , xn
1 ) + I(xn

3 ; yn
3 ) + H(W13 |yn

3 )

+H(W33 |yn
3 ), (11)

where (a) follows from the fact that removing conditioning
cannot reduce the conditional differential entropy.

We bound the term H(W22 | sn1 , xn
1 ). If η2 ≤ |a|2, then we

have I(W22 ; sn1 |xn
1 ) ≥ I(W22 ; yn

2 ). Thus,

H(W22 | sn1 , xn
1 ) ≤ H(W22 |yn

2 )

≤ nεn. (12)

Note that the term H(W13 |yn
3 ) is bounded as (6) when |b|2 ≤

1. Using (4), (6), and (12) in (11), we have

nS ≤ I(xn
1 ,x

n
2 ; yn

1 , s
n
1 ) + I(xn

3 ; yn
3 ) + 5nεn

= I(xn
1 ,x

n
2 ; sn1 )+ I(xn

1 ,x
n
2 ;yn

1 | sn1 )+ I(xn
3 ;yn

3 ) + 5nεn

= h(sn1 )− h(sn1 |xn
1 ,x

n
2 ) + h(yn

1 | sn1 )

−h(yn
1 | sn1 ,xn

1 ,x
n
2 ) + h(yn

3 )− h(yn
3 |xn

3 ) + 5nεn

= h(sn1 )− h(η zn1 ) + h(yn
1 | sn1 )− h(bxn

3 + nn
1 | zn1 )

+h(yn
3 )− h(nn

3 ) + 5nεn
(b)

≤ nh(s1G)− nh(η z1) + nh(y1G) | s1G)

−h(bxn
3 + ñn

1 ) + h(xn
3 + nn

3 )− nh(n3) + 5nεn
(c)

≤ nh(s1G)− nh(η z1) + nh(y1G) | s1G)

+nh(x3G + n3)− nh(b x3G + ñ1)− nh(n3) + 5nεn

= n I(x1G, x2G ; y1G, s1G) + n I(x3G ; y3G) + 5nεn,

where ñ1 ∼ CN (0, 1−|ρ|2), (b) follows since Gaussian inputs
maximize differential entropy for a given covariance constraint
and from the application of Lemma 1 and Lemma 6 in [7],
(c) follows from applying Lemma 1 in [6] (which is a special

case of the extremal inequality considered in [13]) to the term
h(xn

3 + nn
3 )− h(bxn

3 + ñn
1 ), and using the condition |b|2 ≤

1− |ρ|2.
Next, we show that the genie is smart. A smart genie is one

which does not improve the sum-rate when Gaussian inputs
are used, i.e., I(x1G, x2G ; y1G, s1G) = I(x1G, x2G ; y1G).
Lemma 3. (Smart Genie) If Gaussian inputs are used, and
interference is treated as noise, then under the following
condition,

ηρ = 1 + |b|2P3, (13)

the genie does not increase the sum rate, i.e.,

I(x1G, x2G ; y1G, s1G) = I(x1G, x2G ; y1G). (14)

Proof: Note that

I(x1G, x2G ; y1G, s1G)

= I(x1G, x2G ; y1G) + I(x1G, x2G ; s1G | y1G).

The second term on the right hand side can be expanded as

I(x1G ; s1G | y1G) + I(x2G ; s1G | y1G, x1G).

Consider

I(x1G; s1G | y1G)

= I(x1G ; x1G + a x2G + ηz1 |x1G + a x2G + b x3G + n1).

From Lemma 8 in [7], if x, n, z are Gaussian with x being
independent of the two zero-mean random variables n, z, then
I(x ; x+z |x+n) = 0, iff E(z n̄) = E(|n|2), where n̄ denotes
the complex conjugate of n. Thus, I(x1G; s1G | y1G) becomes
zero if |a|2P2 + η ρ = 1 + |a|2P2 + |b|2P3 which reduces to
(13). Now, consider

I(x2G ; s1G | y1G, x1G)

= I(x2G ; a x2G + η z1 | a x2G + b x3G + n1)
(d)
= 0.

where (d) follows from [7, Lemma 8] and (13).
Combining conditions (9) and (13), we have

|a| ≥ 1 + |b|2P3

|ρ|
; |b| ≤

√
1− |ρ|2 (15)

As |ρ| varies from 0 ro 1, |b| varies from 1 to 0. For a fixed
value of b, we have the constraint |ρ| ≤

√
1− |b|2. Note that

choosing ρ =
√

1− |b|2 results in the best bound for a. Thus,
(15) can be rewritten as statement (i) in the Theorem.

C. Optimality of Strategy M3

In strategy M3, all transmitters form a MAC at receiver
1. We derive a sum-rate outer bound to the many-to-one IN
and characterize the gap between the outer bound and the
achievable sum-rate of strategy M3.
Theorem 3. When all transmitters transmit to receiver 1, if

|a| ≥ 1 + |b|2P3

|ρ|
and |b| ≥ 1, (16)
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then the gap between the sum-rate outer bound and the sum-
rate of strategy M3 is given by

log

(
1− (1 + |b|2P3)−1|ρ|2

1− |ρ|2

)
, (17)

where ρ denotes a constant with |ρ| ∈ [0, 1].
Proof: We use genie-aided techniques to derive the sum-

rate outer bound. Let a genie provide the side information
given in (8) to receiver 1. We prove below that the genie is
useful.
Lemma 4. (Useful Genie) The sum-rate capacity of the genie-
aided channel with side information (8) given to receiver 1
is achieved by using Gaussian inputs when all transmitters
transmit to receiver 1, if the following condition holds:

η2 ≤ |a|2, |b|2 ≥ 1, (18)

and the sum-rate of the genie-aided channel is bounded as

S ≤ I(x1G, x2G, x3G ; y1G, s1G). (19)

Proof: The sum-rate S of the genie-aided channel is
bounded as

nS ≤ H(W11,W12,W13,W22,W33)

= I(xn
1 ,x

n
2 ,x

n
3 ;yn

1 , s
n
1 ) +H(W11 |yn

1 , s
n
1 )

+H(W12 |yn
1 , s

n
1 ,x

n
1 ) +H(W22|yn

1 , s
n
1 ,x

n
1 ,W12)

+H(W13|yn
1 , s

n
1 ,x

n
1 ,x

n
2 )

+H(W33|yn
1 , s

n
1 ,x

n
1 ,x

n
2 ,W13)

≤ I(xn
1 ,x

n
2 ,x

n
3 ;yn

1 , s
n
1 ) +H(W11|yn

1 ) +H(W12|yn
1 )

+H(W22|sn1 ,xn
1 )+H(W13|yn

1 )

+H(W33|yn
1 ,x

n
1 ,x

n
2 ). (20)

We bound the term H(W33 |yn
1 ,x

n
1 ,x

n
2 ). If |b|2 ≥ 1, then

I(W33;yn
1 |xn

1 ,x
n
2 ) ≥ I(W33 ; yn

3 ). Therefore,

H(W33 |yn
1 , x

n
1 ,x

n
2 ) ≤ H(W33 |yn

3 )

≤ nεn. (21)

Note that the term H(W22|sn1 ,xn
1 ) is again bounded as in (12)

if η2 ≤ |a|2.
Using (4), (12) and (21) in (20), we have

nS ≤ I(xn
1 ,x

n
2 ,x

n
3 ;yn

1 , s
n
1 ) + 5nεn

= I(xn
1 ,x

n
2 ,x

n
3 ;yn

1 ) + I(xn
1 ,x

n
2 ,x

n
3 ; sn1 |yn

1 ) + 5nεn
(a)

≤ nI(x1G, x2G, x3G; y1G) + h(sn1 |yn
1 )

−h(sn1 |yn
1 ,x

n
1 ,x

n
2 ,x

n
3 ) + 5εn

(b)

≤ nI(x1G, x2G, x3G; y1G) + nh(s1G | y1G)

−nh(ηz1 |n1) + 5εn

= nI(x1G, x2G, x3G ; y1G, s1G) + 5εn,

where (a) follows from the optimality of Gaussian inputs for
Gaussian MAC, (b) follows from Lemma 1 in [7]. Here, y1G

Strat. Channel conditions Gap from Outer-bound

M1 |a|2 + |b|2 ≤ 1 0

M2 (i) |a| ≥ 1 + |b|2P3√
1− |b|2

, |b| ≤ 1 0

(ii) |b| ≥ 1 + |a|2P2√
1− |a|2

, |a| ≤ 1 0

M3 (i) |a| ≥ 1 + |b|2P3

|ρ| , |b| ≥ 1 log

[1− |ρ|2

1 + |b|2 P3

1− |ρ|2

]

(ii) |b| ≥ 1 + |a|2P2

|ρ| , |a| ≥ 1 log

[1− |ρ|2

1 + |a|2 P2

1− |ρ|2

]
TABLE II

SUMMARY OF RESULTS FOR MANY-TO-ONE INTERFERENCE NETWORK

denotes y1 with xi being Gaussian distributed, i.e., y1G =
x1G +ax2G + bx3G +n1. As n→∞, εn → 0 and we get the
desired bound.

Unlike in the case of strategy M2, here the genie does in
fact increase the sum-rate and hence is not smart. However,
we can choose the parameters ρ and η to get a good sum-rate
outer bound as follows. Consider

I(x1G, x2G, x3G ; y1G, s1G)

= I(x1G, x2G, x3G; y1G) + I(x1G, x2G, x3G; s1G | y1G).

The second term on the right hand side can be expanded as

I(x1G, x2G; s1G | y1G) + I(x3G ; s1G | y1G, x1G, x2G). (22)

In the proof of Lemma 3, we showed that by choosing η ρ =
1 + |b|2P3, we can make I(x1G, x2G; s1G | y1G) = 0. Now,
consider

I(x3G; s1G | y1G, x1G, x2G) = I(x3G; η z1 | b x3G + n1)

= h(η z1 | b x3G + n1)− h(η z1 |n1)
(c)
= h(η z1 | b x3G + n1)− h(η z̃1)

= log

(
η2(1 + |b|2 P3)− η2|ρ|2

(1 + |b|2P3)η2(1− |ρ|2)

)
= log

(
1− (1 + |b|2P3)−1|ρ|2

1− |ρ|2

)
, (23)

where z̃1 ∼ CN (0, 1− |ρ|2) and (c) follows from [7, Lemma
6]. Note that (23) represents the gap between the sum-rate
outer bound and the sum-rate of strategy M3. Combining
condition (18) with η ρ = 1 + |b|2P3, we get (16).

Due to the underlying symmetry in the MAC at receiver
1, a result corresponding to Theorem 3 with the channel
coefficients a, b and power levels P2, P3 interchanged is also
true and further can be proved along similar lines. The results
of this section are succinctly summarized in Table II.
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Fig. 4. Variation of |ρ|2 as a function of the gap ∆ in bits. |b| = 1.5.

IV. NUMERICAL RESULTS

In this section, we illustrate the regions where the derived
channel conditions are satisfied for each strategy. First, we nu-
merically analyze the sum-rate outer bound for the optimality
of strategy M3, given in Theorem 3.

Let the gap between the sum-rate outer bound and the
achievable sum-rate of strategy M3 given in (23) be denoted
by ∆. Using (23) and solving for ρ in terms of ∆, we get

|ρ|2 ≤ 2∆ − 1

2∆ − 1/(1 + |b|2 P3)
(24)

In Fig. 4, we plot |ρ|2 as a function of ∆ for different values
of P3 for fixed value of |b| = 1.5. It can be observed that |ρ|2
is a monotonically increasing function of ∆. Thus, to obtain
a lower gap from the outer bound, a lower value of |ρ|2 must
be chosen. This in turn makes the sub region in (16) smaller.
This relationship is explored further is the next figure.

In Fig. 5, we plot the sub region in (16) for the sum-rate
optimality of strategy M3 as a graph in the |a| − |b| plane
for various values of ∆, along with the sub-regions in Table
II for strategiesM1 andM2. We assume P1 = P2 = P3 = 0
dB. As mentioned above, the sub region in (16) shrinks for
increasing values of ∆.

V. CONCLUSIONS

We considered the Gaussian many-to-one interference net-
work with 3 transmitters with messages on all the links.
We formulated different transmission strategies and obtained
sufficient channel conditions under which the strategies were
either optimal or within a gap from an outer bound. In the
process, sum-rate capacity was characterized in some sub-
regions of the many-to-one interference network.
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Fig. 5. A plot of the channel conditions in Table II for the three strategies.
P1 = P2 = P3 = 0 dB.
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