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Abstract—Space-time block codes (STBCs) that are single-symbol
decodable (SSD) in a co-located multiple antenna setting need
not be SSD in a distributed cooperative communication setting.
A relay network with N relays and a single source-destination
pair is called a partially-coherent relay channel (PCRC) if the
destination has perfect channel state information (CSI) of all the
channels and the relays have only the phase information of the
source-to-relay channels. In our earlier work, we had derived a
set of necessary and sufficient conditions for a distributed STBC
(DSTBC) to be SSD for a PCRC. Using these conditions, in this
paper we show that the possibility of channel phase compensa-
tion operation at the relay nodes using partial CSI at the relays
increases the possible rate of SSD DSTBCs from 2

N
when the re-

lays do not have CSI to 1
2
, which is independent of N . We also

show that when a DSTBC is SSD for a PCRC, then arbitrary co-
ordinate interleaving of the in-phase and quadrature-phase com-
ponents of the variables does not disturb its SSD property. Using
this property we are able to construct codes that are SSD and
have higher rate than 2

N
but giving full diversity only for signal

constellations satisfying certain conditions.

Keywords – Cooperative communications, amplify-and-forward protocol,
distributed STBC, single-symbol decoding.

I. INTRODUCTION

The problem of fading and the ways to combat it through spa-
tial diversity techniques have been an active area of research.
Multiple-input multiple-output (MIMO) techniques have be-
come popular in realizing spatial diversity and high data rates
through the use of multiple transmit antennas. For such co-
located multiple transmit antenna systems low maximum-likel-
ihood (ML) decoding complexity space-time block codes (STB-
Cs) have been studied by several researchers [1]-[10] which
include the well known complex orthogonal designs (CODs)
and their generalizations. Recent research has shown that the
advantages of spatial diversity could be realized in single-anten-
na user nodes through user cooperation [11],[12] via relaying.
A simple wireless relay network of N + 2 nodes consists of
a single source-destination pair with N relays. For such re-
lay channels, use of CODs has been studied in [13]. CODs
are attractive for cooperative communications for the follow-
ing reasons: i) they offer full diversity gain and coding gain,
ii) they are ‘scale free’ in the sense that deleting some rows
does not affect the orthogonality, iii) entries are linear combi-
nation of the information symbols and their conjugates which
means only linear processing is required at the relays, and iv)
they admit very fast ML decoding (single-symbol decoding

(SSD)). However, it should be noted that the last property ap-
plies only to the decode-and-forward (DF) policy at the relay
node.
In a scenario where the relays amplify and forward (AF) the
signal, it is known that the orthogonality is lost, and hence the
destination has to use a complex multi-symbol ML decoding
or sphere decoding [13],[14]. It should be noted that the AF
policy is attractive for two reasons: i) the complexity at the
relay is greatly reduced, and ii) the restrictions on the rate
because the relay has to decode is avoided [15]. In order to
avoid the complex ML decoding at the destination, in [16],
the authors propose an alternative code design strategy and
propose a SSD code for 2 and 4 relays. For arbitrary num-
ber of relays, recently in [17], distributed orthogonal STBCs
(DOSTBCs) have been studied and it is shown that if the desti-
nation has the complete channel state information (CSI) of all
the source-to-relay channels and the relay-to-destination chan-
nels, then the maximum possible rate is upper bounded by 2

N

complex symbols per channel use for N relays. Towards im-
proving the rate of transmission and achieving simultaneously
both full-diversity as well as SSD at the destination, in our ear-
lier work [18], we study relay channels with the assumption
that the relays have the phase information of the source-to-
relay channels and the destination has the CSI of all the chan-
nels. We derived a set of necessary and sufficient conditions
for a DSTBC to be SSD in PCRC.
In this paper, we use the conditions developed in [18] and
show the following results regarding the high rate codes.

• It is shown that the possibility of channel phase compen-
sation operation at the relay nodes using partial CSI at
the relays increases the possible rate of SSD DSTBCs
from 2

N
when the relays do not have CSI to 1

2 , which is
independent of N .

• It is shown that when a DSTBC is SSD for a PCRC,
then arbitrary coordinate interleaving of the in-phase and
quadrature-phase components of the variables does not
disturb its SSD property for PCRC. This property enables
construction of codes that are SSD and have higher rate
than 2

N
but offer full diversity only for signal constella-

tions satisfying certain conditions.

A unified treatment of the results of [18] and of this paper is
available as [20].
The remaining part of the paper is organized as follows: In
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Fig. 1. A cooperative relay network.

Section II, the signal model for a PCRC is developed. In Sec-
tion III, we recapitulate the necessary and sufficient conditions
derived in [18] for a DSTBC to be SSD in a PCRC is obtained.
In Section IV, we prove that the rate-halving codes from real
orthogonal designs are SSD for PCRC. Then, in Section V, we
prove that arbitrary coordinate interleaving of the in-phase and
quadrature-phase components of the variables does not disturb
its SSD property for PCRC. Concluding remarks are given in
Section VI.

II. SYSTEM MODEL

Consider a wireless network with N + 2 nodes consisting of
a source, a destination, and N relays, as shown in Fig. 1.
All nodes are half-duplex nodes, i.e., a node can either trans-
mit or receive at a time on a specific frequency. We consider
amplify-and-forward (AF) transmission at the relays. Trans-
mission from the source to the destination is carried out in two
phases. In the first phase, the source transmits information
symbols x(i), 1 ≤ i ≤ T1 in T1 time slots. All the N relays
receive these T1 symbols. This phase is called the broadcast
phase. In the second phase, all the N relays1 perform dis-
tributed space-time block encoding on their received vectors
and transmit the resulting encoded vectors in T2 time slots.
That is, each relay will transmit a column (with T2 entries) of
a distributed STBC matrix of size T2 × N . The destination
receives a faded and noise added version of this matrix. This
phase is called the relay phase. We assume that the source-to-
relay channels remain static over T1 time slots, and the relay-
to-destination channels remain static over T2 time slots.
The received signal at the jth relay, j = 1, · · · , N , in the ith
time slot, i = 1, · · · , T1, denoted by v

(i)
j , can be written as2

v
(i)
j =

√
E1hsjx

(i) + z
(i)
j , (1)

1Here, we assume that all the N relays participate in the cooperative trans-
mission. It is also possible that some relays do not participate in the trans-
mission based on whether the channel is in outage or not. We do not consider
such a partial participation scenario here.

2We use the following notation: Vectors are denoted by boldface lowercase
letters, and matrices are denoted by boldface uppercase letters. Superscripts
T and H denote transpose and conjugate transpose operations, respectively
and ∗ denotes matrix conjugation operation.

where hsj is the complex channel gain from the source s to
the jth relay, z

(i)
j is additive white Gaussian noise at relay j

with zero mean and unit variance, E1 is the transmit energy
per symbol in the broadcast phase, and E

[(
x(i)

)∗
x(i)

]
= 1.

We assume that each relay has the knowledge of the channel
phase on the link between the source and itself in the broad-
cast phase. That is, defining the channel gain from source to
relay j as hsj = αsje

jθsj , we assume that relay j has perfect
knowledge of only θsj and does not have the knowledge of
αsj . We perform a channel phase compensation operation and
amplification of the received signals at the relays before per-
forming space-time encoding. That is, we multiply v

(i)
j in (1)

by e−jθsj as well as by an amplification factor G . The ampli-
fied and phase compensated ith received signal at the jth relay
can be written as

v̂
(i)
j =

√
E2

E1 + 1︸ ︷︷ ︸
�
= G

e−jθsjv
(i)
j , (2)

where E2 is the transmit energy per transmission of a symbol
in the relay phase, and the amplification factor G at the relay,
makes the total transmission energy per symbol in the relay
phase to be equal to E2. Let Et denote the total energy per
symbol in both the phases put together. Then, it is shown in
[15] that the optimum energy allocation that maximizes the re-
ceive SNR at the destination is when half the energy is spent in
the broadcast phase and the remaining half in the relay phase
when the time allocations for the relay and broadcast phase
are same i.e., T1 = T2. We also assume that the energy is
distributed equally i.e., E1 = Et

2 and E2 = Et

2M
, where M is

the number of transmissions per symbol in the STBC. For the
unequal-time allocation (T1 �= T2) this distribution might not
be optimal.
At relay j, a 2T1 × 1 real vector v̂j given by

v̂j =
[
v̂
(1)
jI , v̂

(1)
jQ , v̂

(2)
jI , v̂

(2)
jQ , · · · , v̂

(T1)
jI , v̂

(T1)
jQ

]T

, (3)

is formed, where v̂
(i)
jI and v̂

(i)
jQ, respectively, are the in-phase

(real part) and quadrature (imaginary part) components of v̂
(i)
j .

Now, (3) can be written in the form

v̂j = G
√

E1 |hsj |x + ẑj . (4)

where x is the 2T1 × 1 data symbol real vector, given by

x =
[
x

(1)
I , x

(1)
Q , x

(2)
I , x

(2)
Q , · · · , x

(T1)
I , x

(T1)
Q

]T

, (5)

ẑj is the 2T1 × 1 noise vector, given by

ẑj =
[
ẑ
(1)
jI , ẑ

(1)
jQ , ẑ

(2)
jI , ẑ

(2)
jQ , · · · , ẑ

(T1)
jI , ẑ

(T1)
jQ

]T

,

where ẑ
(i)
j = Ge−jθsjz

(i)
j . Let

C =
[
c1, c2, · · · , cN

]
(6)
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denote the T2 × N distributed STBC matrix to be sent in the
relay phase jointly by all N relays, where cj denotes the jth
column of C. The jth column cj is manufactured by the jth
relay as

cj = Ajv̂j

= G
√

E1Aj |hsj | x + Aj ẑj , (7)

where Aj is the complex processing matrix of size T2 × 2T1

for the jth relay, called the relay matrix. For example, for the
2-relay case (i.e., N = 2), with T1 = T2 = 2, using Alamouti
code, the relay matrices are given by

A1 =

»
1 j 0 0
0 0 −1 j

–
and A2 =

»
0 0 1 j
1 −j 0 0

–
. (8)

Let y denote the T2 × 1 received signal vector at the destina-
tion in T2 time slots. Then, y can be written as

y =

N∑
j=1

hjdcj + zd, (9)

where hjd is the complex channel gain from the jth relay to
the destination, and zd is the AWGN noise vector at the desti-
nation with zero mean and E[zd zHd ] = I. Substituting (7) in
(9), we can write

y = G

p
E1

0
@ NX

j=1

hjd|hsj|Aj

1
A x +

NX
j=1

hjdAjbzj + zd

| {z }
z̃d : total noise

. (10)

Such systems will be referred as partially-coherent relay chan-
nels (PCRC). A distributed STBC which is SSD for a PCRC
will be referred as SSD-DSTBC-PCRC.

III. CONDITIONS FOR SSD IN PCRC

In [18], we have proved the following two theorems.
Theorem 1: For co-located MIMO with N transmit antennas,
the linear STBC as given in (6) is SSD iff

AT
jIAjI + AT

jQAjQ = D
(1)
jj ; ∀j,

AT
jIAiI + AT

jQAiQ + AT
iIAjI + AT

iQAjQ = D
(2)
ij ; ∀i, j, i �= j,

AT
jIAiQ + AT

jQAiI − AT
iIAjQ − AT

iQAjI = D
(3)
ij

;∀i, j, i �= j, (11)

where Aj = AjI + jAjQ, j = 1, 2, · · · , N , where AjI and
AjQ are real matrices, and D

(1)
jj ,D

(2)
ij and D

(3)
ij are block di-

agonal matrices of the form

D
(k)
ij =

2
66664

D
(k)
ij,1 0 · · · 0

0 D
(k)
ij,2 · · · 0

...
...

. . .
...

0 · · · · · · D
(k)
ij,T1

3
77775 , (12)

where D
(k)
ij,l =

"
a
(k)
ij,l b

(k)
ij,l

b
(k)
ij,l c

(k)
ij,l

#
and it is understood that when-

ever the superscript is (1) as in D
(1)
ij , then i = j.

Theorem 2: A code as given by (7) is SSD-DSTBC-PCRC iff
the relay matrices Aj , j = 1, 2, · · · , N, satisfy (11) (i.e., the
code is SSD for a co-located MIMO set up), and, in addition,

Aj1I
T

“
Aj2IAj2I

T
+ Aj2QAj2Q

T
”
Aj3I+

Aj3I
T

“
Aj2IAj2I

T
+ Aj2QAj2Q

T
”
Aj1I+

Aj1Q
T

“
Aj2IAj2I

T
+ Aj2QAj2Q

T
”
Aj3Q+

Aj3Q
T

“
Aj2IAj2I

T
+ Aj2QAj2Q

T
”
Aj1Q = D

′

j1 ,j2,j3
,

∀j1, j2, j3, (13)

Aj1I
T

“
Aj2IAj2Q

T
+ Aj2QAj2I

T
”
Aj3Q+

Aj3Q
T

“
Aj2IAj2Q

T
+ Aj2QAj2I

T
”
Aj1I+

Aj1Q
T

“
Aj2IAj2Q

T
+ Aj2QAj2I

T
”
Aj3I+

Aj3I
T

“
Aj2IAj2Q

T
+ Aj2QAj2I

T
”
Aj1Q = D

′′

j1 ,j2,j3
,

∀j1, j2, j3, (14)

where D
′

j1,j2,j3
and D

′′

j1,j2,j3
, 1 ≤ j1, j2, j3 ≤ N , are block

diagonal matrices of the form in (12).
We will use these results to derive our new results in the fol-
lowing two sections.

IV. A CLASS OF RATE- 1
2 SSD DSTBCS

It is well known that the rate of square SSD codes for co-
located MIMO systems falls exponentially as the number of
antennas increases. In this section, it is shown that if non-
square designs are used then SSD codes for PCRCs can be
achieved with rate 1

2 for any number of antennas.
It is well known [1] that real orthogonal designs (RODs) with
rate one exist for any number of antennas and these are non-
square designs for more than 2 antennas and the delay in-
creases exponentially with the number of antennas. Using
these RODs, in [1], a class of rate 1

2 complex orthogonal de-
signs for any number of antennas is obtained as follows: If G

is a p × N rate one ROD, where p denotes the delay and N

denotes the number of antennas with variables x1, x2, · · · , xp,

then, denoting by G∗ the complex design obtained by replac-

ing xi with x∗
i , i = 1, 2, · · · , p, the design

[
G

G∗

]
is a 2p×N

rate- 1
2 COD. We refer to this construction as stacking con-

struction. The following theorem asserts that the rate 1
2 CODs

by stacking construction are SSD for PCRC.
Theorem 3: The rate-1/2 CODs, constructed from rate one
RODs by stacking construction [1] are SSD-DSTBC-PCRC.
Proof: Let Gc be the rate-1/2 COD obtained from a p × N

ROD G by stacking construction, i.e.,

Gc =

[
G

G∗

]
. (15)

Let the p × p real matrices Âj j = 1, · · · , N generate the
columns of G, i.e.,

G =
[
Â1x, Â2x, · · · , ÂNx

]
, (16)
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where x is the p × 1 real data vector and the matrices Âj

denote the column vector representation matrices used in [5].
By the definition of RODs, GTG =

(
xTx

)
I. This implies

that

ÂT
j Âj = I, j = 1, · · · , N

ÂT
j Âi = −ÂT

i Âj , i, j = 1, · · · , N, i �= j. (17)

It is noted that the Hurwitz-Radon family of matrices satisfy
(17) and explicit construction for any N is given in [1]. It is
noted that the representation in [1] is different from the col-
umn vector representation used in this paper. An important
consequence is that the Hurwitz-Radon family of matrices sat-
isfy the conditions

ÂT
j Âj = I, j = 1, · · · , N

ÂT
j = −Âj , j = 1, · · · , N

ÂjÂi = −ÂiÂj , i, j = 1, · · · , N, i �= j, (18)

and hence ÂjÂ
T
j = I ∀j, which we will use in our proof.

Viewing Gc as a T2 × N distributed STBC with T1 = p and
T2 = 2p, the T2 × 2T1 relay matrices Aj of Gc have the
structure

AjI =

(
Uj

Uj

)
and AjQ =

(
Vj

−Vj

)
. (19)

Since Gc is constructed from a ROD, the coefficients of real
and imaginary components are same, i.e., the matrices Uj and
Vj have the form

Uj = [γ1,j ,0, γ2,j,0, · · · , γT1,j ,0]

Vj =
[
0, γ1,j ,0, γ2,j, · · · ,0, γT1,j

]
, (20)

with γi,j are column vectors of Âj . Since ÂjÂ
T
j = I ∀j, it is

easily verified that UjU
T
j = I and VjV

T
j = I ∀j. It is also

easily seen that UjV
T
j = 0 and VjU

T
j = 0. Hence, we have

AjIAjI
T + AjQAjQ

T = 2I

AjIAjQ
T + AjQAjI

T = 0 (21)

Substituting this in (13), we get the left hand side of (13) to be

2

“
Aj1I

T Aj3I + Aj3
T Aj1I + Aj1Q

T Aj3Q + Aj3Q
T Aj3Q

”
, (22)

which, by (11), is always a block diagonal matrix of the form
(12). Also the left hand side of (14) is 0. Hence, Gc is SSD
for PCRC. �

In [17], it is shown that if the N relays do not have any CSI and
the destination has all the CSI, then an upper bound on the rate
of distributed SSD codes is 2

N
, which decreases rapidly as the

number of relays increases. However, Theorem 3 shows that,
if the relay knows only the phase information of the source-
relay channels then the lower bound on the rate of the dis-
tributed SSD codes is 1

2 which is independent of the number
of relays. For example, the ROD part of such rate-1/2 SSD
DSTBCs for PCRC for 10 relays using Hurwitz-Radon con-
struction yields a 32 × 10 matrix and for 12 relays it yields a
64 × 12 matrix.

V. INVARIANCE OF SSD UNDER COORDINATE
INTERLEAVING

In this section, we show that the property of SSD of a DSTBC
for PCRC is invariant under coordinate interleaving of the data
symbols. To illustrate the usefulness of this result we first
show the following lemma.
Lemma 1: If G(x1, · · · , xT1

) is a SSD design in T1 variables
and N transmit nodes that satisfies (11), (13) and (14), then
the design in 2T1 variables and 2N transmit nodes given by

Ḡ(x1, · · · , x2T1
) =

»
G(x1, · · · , xT1

) 0
0 G(xT1+1, · · · , x2T1

)

–
(23)

also satisfies (11), (13) and (14).
Proof: If Aj , 1 ≤ j ≤ N are the relay matrices of G, then

the corresponding Āj matrices for Ḡ are Āj =

[
Aj 0

0 0

]
,

1 ≤ j ≤ N and Āj =

[
0 0

0 Aj

]
, N + 1 ≤ j ≤ 2N . It is

easily verified that if Aj satisfies (11), (13) and (14), then so
do the matrices Āj . �

As an example, if we choose G(x1, x2) to be the Alamouti
code in the lemma above then we get the code⎡

⎢⎢⎣
x1 x2 0 0

−x∗
2 x∗

1 0 0
0 0 x3 x4

0 0 −x∗
4 x∗

3

⎤
⎥⎥⎦ . (24)

This code is SSD for PCRC. Note that a 4-antenna COD has
only rate only 3

4 whereas this code has rate 1. However, it is
easily shown that this code does not give full-diversity. But,
coordinate interleaving for this example results in CIOD4

which gives full-diversity for any signal set with coordinate
product distance zero, and we have already seen that CIOD4

has the SSD property for PCRC.
The following theorem shows that it is the property of coor-
dinate interleaving to leave the SSD property of any arbitrary
STBC for PCRC intact.
Theorem 4: If an STBC with K variables x1, x2, · · · , xK ,

satisfy (11), (13) and (14), the SSD property is unaffected
by doing arbitrary coordinate interleaving among all real and
imaginary components of xi.3
Proof: The data-symbol vector in (5) after interleaving can be
written as

x̃ = Ĩ x

where Ĩ is the interleaving matrix which is a permutation ma-
trix obtained by permuting the rows (/columns) of the identity
matrix I to reflect the coordinate interleaving operation. It can
be easily checked that Ĩ2 = I. Also, if D is a block diagonal
matrix of the form (12), then so is the matrix ĨDĨ. Hence, for
PCRC with co-ordinate interleaving (7) can be written as

cj = Aj v̂j

= G
√

E1Aj |hsj |Ĩ x + Aj ẑj , (25)
3It should be noted that neither the source nor the relay does an explicit

interleaving, but the net effect of the relay matrices is such that the output of
relays is an interleaved version of the information symbols.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

2541



which means that after interleaving, the equivalent linear pro-
cessing matrix is Aj Ĩ. It is easily verified that if Aj satisfies
(11), (13) and (14), then so does Aj Ĩ also. �

As an example, consider the Alamouti code
[

x1 x2

−x∗
2 x∗

1

]
,

whose relay matrices are given by (8). For this case, N =
T1 = T2 = 2. The permutation matrix Ĩ for the coordinate in-

terleaving operation is

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦ . The relay matrices

for the coordinate interleaved code are

A1Ĩ =

»
1 0 0 j
0 j −1 0

–
and A2Ĩ =

»
0 j 1 0

1 0 0 −j

–
,(26)

and the resulting code is
[

x1I + jx2Q x2I + jx1Q

−x2I + jx1Q x1I − jx2Q

]
=[

x̃1 x̃2

−x̃∗
2 x̃∗

1

]
. Also, for the code in (24) which is SSD for

PCRC, if we choose the permutation matrix Ĩ as

Ĩ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (27)

the resulting code is given by

2
64

x1I + jx3Q x2I + jx4Q 0 0

−x2I + jx4Q x1I − jx3Q 0 0

0 0 x3I + jx1Q x4I + jx2Q

0 0 −x4I + jx2Q x3I − jx1Q

3
75

=

2
64

x̃1 x̃2 0 0

−x̃∗

2 x̃∗

1 0 0

0 0 x̃∗

3 x̃∗

4
0 0 −x̃∗

4 x̃∗

3

3
75 , (28)

which is the complex interleaved orthogonal design with 4
antennas (CIOD4) in [8]. Hence, CIOD4 is also SSD for
PCRC. In general, if we have a code with K complex infor-
mation symbols which is SSD for PCRC, then we can gen-
erate (2K)! codes which are SSD for PCRC by coordinate
interleaving. Also, by using the construction in (23) and co-
ordinate interleaving we can construct SSD codes for PCRC
that have higher rates. But it is noted that, complex inter-
leaved orthogonal designs give full diversity only under re-
stricted constellations [8].

VI. CONCLUSIONS

In this paper, we have proved that rate-halving codes from real
orthogonal designs are single-symbol decodable in a partially
coherent relay channel. We have also proved that arbitrary
coordinate interleaving of the in-phase and quadrature-phase
components of the variables does not disturb its single-symbol
decodability property in a partially coherent relay channel.
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