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II. NON-ORTHOGONAL STBC MIMO SYSTEM MODEL

Consider a STBC MIMO system with multiple transmit and
multiple receive antennas. An (n, p, k) STBC is represented
by a matrix X E C n x p

, where nand p denote the number
of transmit antennas and number of time slots, respectively,
and k denotes the number of complex data symbols sent in
one STBC matrix. The (i, j )th entry in X represents the
complex number transmitted from the ith transmit antenna
in the jth time slot. The rate of an STBC is ~. Let N; and
N, == n denote the number of receive and transmit anten­
nas, respectively. Let H E ceNrXNt denote the channel gain
matrix, where the (i,j)th entry in H is the complex channel
gain from the jth transmit antenna to the ith receive antenna.
We assume that the channel gains remain constant over one
STBC matrix duration. Assuming rich scattering, we model
the entries ofH as CN(o, 1). The received space-time signal
matrix, Y E ceN r X P , can be written as

tally shown to converge fast and scale to large dimensions, for
sparse as well as dense matrices (e.g., solvers for SVMs and
peer-to-peer rating in references [32] and [33] of [18]). Tak­
ing the cue from the success of BP in decoding turbo codes
and achieving near-capacity performance with large frame
sizes, in this paper we achieve near-optimal and near-capacity
performance in decoding STBCs with large dimensions using
BP at low complexities.

It is known that graphical models that represent MIMO sys­
tems are highly connected. While BP was initially formalized
for loop-free graphs, it has been empirically found to work
in loopy graphs as well [10],[19]. In the context of MIMO
detection using BP, [16] reported a successful adoption of
BP algorithm on Markov random fields (MRF) by employ­
ing beliefpropagation meant for pairwise MRFs as described
in [8]. It presented the BER performance of the BP based
detector for V-BLAST with N, == 4 and N; == 4, 6, 8 with­
out and with simulated annealing. However, BP approach
applied to large dimension decoding in MIMO systems, par­
ticularly large non-orthogonal STBC MIMO systems, has not
been reported so far. In this regard, our work here is the first
in reporting BP on MRFs for large dimension STBC MIMO
decoding. Our simulation results show that the proposed BP
decoding algorithm performs close to within just about 2.5
dB from the theoretical MIMO capacity in a 24 x 24 non­
orthogonal STBC MIMO system using BPSK and rate-l/2
turbo code at a spectral efficiency of 12 bps/Hz. We also
present the performance of BP decoding in the presence of
spatial correlation. We show that the loss in performance due
to spatial correlation can be alleviated by using increased re­
ceive spatial dimensions.

E ceNT xp is the noise matrix at the receiver and
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I. INTRODUCTION
Use of multiple antennas at the transmitter can offer the ben­
efits of transmit diversity (e.g., using space-time coding) and
high data rates (e.g., using spatial multiplexing) [1]. MIMO
systems that employ non-orthogonal space-time block codes
(STBC) from cyclic division algebras (CDA) for arbitrary
number of transmit antennas, Ni, are particularly attractive
because they can simultaneously provide both full-rate (i.e.,
N, complex symbols per channel use, which is same as in V­
BLAST) as well as full transmit diversity [2],[3]. The 2 x 2
Golden code is a well known non-orthogonal STBC from
CDA for 2 transmit antennas [4]. High spectral efficiencies
of the order of tens of bps/Hz can be achieved using large
non-orthogonal STBCs. For e.g., a 16 x 16 STBC from CDA
has 256 complex symbols in it with 512 real dimensions; with
16-QAM and rate-3/4 turbo code, this system offers a high
spectral efficiency of48 bps/Hz. Decoding ofnon-orthogonal
STBCs with such large dimensions, however, has been a chal­
lenge. Sphere decoder and its low-complexity variants are
prohibitively complex for decoding such STBCs with hun­
dreds ofdimensions. Recently, we proposed a low-complexity
near-ML achieving algorithm to decode large non-orthogonal
STBCs from CDA; this algorithm, which is based on bit­
flipping approach, is termed as likelihood ascent search (LAS)
algorithm [5]-[7]. Our new contribution in this paper is that
we present a beliefpropagation (BP) based approach to de­
coding of non-orthogonal STBCs with large dimensions, and
report very good uncoded BER and near-capacity performance.
To our knowledge, BP has not been reported for decoding
non-orthogonal STBCs from CDA having large dimensions.

Belief propagation [8] is known to be well suited in several
communication problems [9]; e.g., decoding of turbo codes
and LDPC codes [10],[11], multiuser detection [12],[13], sig­
nal detection in lSI channels [14],[15], and MIMO detection
[16],[17]. In [18], the problem of linear detection is refor-
mulated as a Gaussian BP scheme, which was experimen- where N
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its entries are modeled as i.i.d CN(O, (J"2 == N\E s
) , where E;

is the average energy of the transmitted symbols, and I is the
average received SNR per receive antenna [1], and the (i, j )th
entry in Y is the received signal at the ith receive antenna in
the jth time slot. Consider linear dispersion STBCs, where
X can be written in the form [1]

k

X Lx(i)A(i), (2)

i=l

where x(i) is the ith complex data symbol, and A (i) E ceNt xp

is its weight matrix. The received signal model in (1) can be
written in an equivalent V-BLAST form as

k

Y Lx(i)(Ha(i))+n == Hx+n, (3)
i=l

where y E CNrpXl = vee (Y), if E CNrpXNtP = (I p 0 H),
I p is p X P identity matrix, a Ci) E CNtPXl = vee(ACi)), n E

CNrpXl = vee(N), x E C
k X 1 whose ith entry is the data

symbol x(i), and if E CNrPXk whose ith column is Ha(i),

i == 1,2, ... , k. We note that (3) can be viewed as an equiv­
alent V-BLAST representation of the non-orthogonal STBC
MIMO system. We assume that the channel gains are known
at the receiver but not at the transmitter.

A. High-Rate Non-Orthogonal STBCsfrom CDA
We consider square (i.e., n==p==Nt ) , full-rate (i.e., k==pn==
Nl), circulant (where the weight matrices A (i) 's are permu­
tation type), non-orthogonal STBCs from CDA [2], whose
construction for arbitrary number of transmit antennas n is
given by the matrix in (3.a) given at the bottom of this page

j27r

[2]. In (3.a), W n = e----n-, j = A, and du,v, 0 < u, v <
n - 1 are the n 2 data symbols from a QAM alphabet. When

8 == eVS j and t == ej , the STBC in (3.a) achieves full trans­
mit diversity (under ML decoding) as well as information­
losslessness [2]. When 8 == t == 1, the code ceases to be of
full-diversity (FD), but continues to be information-lossless
(ILL). High spectral efficiencies with large N, can be achieved
using this code construction; e.g., 16 x 16 STBC from (3.a)
using 4-QAM and rate-3/4 turbo code offers a spectral ef­
ficiency of 24 bps/Hz along with the full-diversity of order
NiN; under ML detection. However, since these STBCs
are non-orthogonal, ML/MAP detection gets increasingly im­
practical for large Ni. Hence, a key challenge in realizing the
benefits of these large non-orthogonal STBCs in practice is
that of achieving near-ML/MAP performance for large N, at
low decoding complexities. The BP based decoding approach
in this paper essentially addresses this issue.

III. BP ON MRFs FOR LARGE DIMENSION MIMO
DETECTION/DECODING

In this section, we present the BP detection algorithm as­
suming a V-BLAST system using BPSK. The algorithm can
be applied on the equivalent V-BLAST representation of the
non-orthogonal STBC MIMO system given by (3).
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Fig. 1. Markov random field representation ofa BPSK V-BLAST system
with 4 transmit antennas.

BP is a technique that solves inference problems using graph­
ical models such as factor graphs, Bayesian belief networks
and MRFs. In this paper, we consider BP on MRF represen­
tation ofMIMO systems.

A. MRF Representation ofa MIMO System

MRFs are graphs that indicate inter-dependencies between
random variables [9]. An MRF is an undirected graph whose
vertices are random variables. The variables are such that any
variable is independent of all the other variables, given its
neighbors, i.e.,

p(xklxl, ... ,Xk-l,Xk+l, ... ,XN) ==p[xkIN(Xk)], (4)

where N (xk) represents the set of all nodes neighboring the
node pertaining to the variable x k. Usually, the variables in an
MRF are constrained by a compatibilityfunction, also known
as a clique potential in literature. A clique of an MRF is
a fully connected sub-graph that does not remain fully con­
nected if any additional vertex of the MRF is included in it.
This is sometimes called a maximal clique, but we shall use
the term clique to refer to a maximal clique. Let there be N c
cliques in the MRF, and Xj be the set of variables in clique j.
Let ttPj (Xj) be the clique potential of clique j. Then the joint
distribution of the variables is

Nc

p (x) ex II ttPj (Xj) ,
j=l

where x is the set of all variables in the graph. For exam­
ple, consider the MRF representation of a BPSK V-BLAST
system with 4 transmit antennas as shown in Fig. 1. Here,
Xl, X2, X3, X4 respectively are the binary symbols transmit­
ted from the four transmit antennas. Each of these symbols
assumes a value from {±1}. In a V-BLAST system, since ev­
ery transmitted symbol interferes with every other transmit­
ted symbol at the receiver, the MRF is fully-connected, and
contains a single clique, namely, {Xl, X2, X3, X4}. The joint
probability distribution is

p (Xl, X2, X3, X4) == p (Xl) p (x2I xl) P (x3I xl, X2)

p(x4Ixl,X2,X3). (6)

B. Pairwise MRFs

L~~Ol d n-2,'i t
i

L~==-Ol dn-l,i t
i

6 L~==-Ol dn-l,i w~ t
i

L~==-Ol dO,i w~ t
i

L~==-Ol dl, i w~, t i

L~==-Ol d n - 3 , i w~ t
i

L~~} d n - 2 , i w~ t'i

6 L~==-Ol dl,i w~n-l)i t i

6 L~==-Ol d2,i w~n-l)i t i

6 L~==-Ol d3,i w~:n-l)i t i

An MRF is called a pairwise MRF if all the cliques in the
MRF are of size two. In this case, the clique potentials are all

(3.a) functions of two variables. The clique potentials can then be
denoted as ttPi,j (Xi, Xj), where Xi, Xj are variables connected
by an edge in the MRF.
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(14)

(13)

(II)

(12)

exp [~ (xfZi) + In{p (Xi)} ]

exp [~ (- x f Ri,j x j) ] ,

cPi (Xi)

'l/Ji, j (Xi , Xj)

MIMO systems, exemplified in Fig. I, are not pairwise MRFs.
However, application of the BP algorithm for pairwise MRFs,
as outlined by (9) and (10), to the MRFs of MIMO systems
yields a low-complexity detector for MIMO systems with large
dimensions'. The joint probability distribution for hidden
variables Xi in a pairwise MRF is given by (8). We use the
following functions cPi and 'l/Ji, j for MIMO detection using
BP:

Fig. 3. Message passing in an MRF for a BPSK V-BLAST system with 4
transmit antennas.

E. Computational Complexity

The complexity of the detection scheme comprises of three
components, namely, i) computation of the R matrix given
by (14) and matched filter output z given by (13), ii) compu­
tation oflocal evidence cP and compatibility function 'l/J in (II)
and (12), respectively, and iii) calculation ofbeliefs and mes­
sages during iterative message passing given by (9) and (10),

mij( Xj) = L X,E{± I} <Pi(Xi),pij (Xi, Xj) Ilk,N(i)\ j mki(x i) ;

N U) = Set of neighbours ofith node.

e.g., mI2(x2) = L X, E{± I} <Pl (Xl ),p12(Xl , x2)m31(x I)rn41(XI)

1 - H
Z ~ 2H s ,

(Y

R ~ 1 HHH
(Y2 •

Then, the message from node i to a neighboring node j in the
BP algorithm is given by (10) as given in [8]. For a BPSK V­
BLAST system with 4 transmit antennas, the message pass­
ing scheme is summarized in Fig. 3. Nodes pass messages
to each other in an iterative fashion. After the last iteration,
beliefs are calculated locally at each node. The value of Xi
which has the maximum belief is selected as the symbol de­
cision. The belief is the soft-output of the detector which can
be fed to the decoder in a coded system.

where [16]

(9)

(8)
i ,l

p(x,y) ex. II 'l/Ji,j (Xi, Xj) II cPi (Xi,Yi) . (7)
i ,j

C. BeliefPropagation on Pairwise MRFs

Consider a situation similar to that of Fig. 2, where Xi'S are
the hidden variables and y/s are the observed variables. If
we consider the y/s to be fixed and write cPi (Xi ,Yi) simply
as cPi (Xi), then, from (7), the joint distribution for the hidden
variables can be written as [8]

Fig. 2. An example of a pairwise Markov random field with observed
(explic it) variables and hidden (implic it) variables.

Consider a pairwise MRF in which the Xi'S denote underly­
ing hidden variables on which the observed variables Yi'S are
dependent [8]. Let the dependence between the hidden vari­
able Xi and the explicit variable Yi be represented by a joint
compatibility function cPi (Xi ,Yi)' This scenario is shown in
Fig. 2. In such a scenario, the joint distribution of the hidden
and explicit variables is

D. BP for MIMO Detection

In this subsection, for the MIMO system defined by an MRF lOur simulation results show that near SISO AWGN uncoded BER per-
formance and near-capacity coded BER performance are achieved in large

(e.g. , as shown in the graph in Fig. I) , we present the BP dimension V-BLAST as well as non-orthogonal STBC MIMO systems by
based detection algorithm. We observe that the MRFs for this approximate approach.

2005

A message from node j to node i denoted as mj,i (Xi), and
belief at node i denoted as b,(Xi) are vectors of length equal
to the number of values that the discrete variable Xi can pos­
sibly take (e.g., length of message and belief vectors is 2 in
BPSK since Xi E {±1}). Each element of the belief vector
is proportional to how likely the corresponding value of Xi
was transmitted. On the other hand, each element in the mes­
sage vector mji(xi) is proportional to how likely Xj thinks
the corresponding value of Xi has been transmitted. The be­
lief at node i about the state of Xi is

b, (Xi) ex. cPi (Xi) II m j,i (Xi) .
jEN(i)

In particular, the messages are defined as [8]

mj,dXi) ex. L cPj (Xj) 'l/Jj,dXj , Xi) II mk ,j(Xj) . (10)
Xj kEN(j)\ i

Equation (10) actually constitutes an iteration, as the mes­
sage is defined in terms of the other messages. Therefore,
belief propagation essentially involves computing the outgo­
ing messages from a node to each of its neighbors using the
local joint-compatibility function and the incoming messages
and transmitting them.
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respectively. The computation of Rand z involves the com­
putation ofHHH and HHy , respectively. In case ofSTBC
MIMO system, two good properties of the STBCs from CDA
are instrumental in achieving low orders of complexity for
the computation ofHHH and HHy . They are: i ) the weight
matrices A (i) 's are permutation type, and ii ) the N t

2 x N t
2

matrix formed with N[ x l-sized a (i ) vectors as columns is
a scaled unitary matrix. For N, = N», the computation of
HHy and hence z can be done in O( N{) complexity, i.e., in
O( Nl) per-symbol complexity since there are N t

2 symbols
in one STBC matrix. Likewise , the computation of HHH
and hence R can be done in O( Nf) per-symbol complexity.
In case of V-BLAST, Rand z can be computed in O( Nl)
and O( N t ) per-symbol complexity, respectively. Computa­
tion of 'l/J involves O(Nl) and O( N t ) per-symbol complexity
for STBC and V-BLAST, respectively. The per-symbol com­
plexity of computing ¢ is 0(1). The per-symbol complexi­
ties involved in the computation of messages and beliefs in a
single iteration for V-BLAST are O( Nl) and O( N t ) , respec­
tively; for STBC, these complexities are of order 0(p2Nl)
and O(pN t ) , respectively.

IV. SIM ULATION R ES ULTS

Our simulation results have shown that the proposed BP based
algorithm achieves increasingly closer to SISO AWON un­
coded BER performance for V-BLAST signals with increas­
ing number of dimensions (e.g., performance close to within
1 dB of 10- 3 uncoded BER for hundreds of dimensions).
Since the dimensions in V-BLAST are in space alone, sys­
tems with hundreds of antennas may not be realistic. On the
other hand , use ofnon-orthogonal STBCs from CDA can cre­
ate hundreds ofdimensions with just tens of antennas (space)
and tens of channel uses (time). In this section , we present
the uncoded and coded BER performance of the proposed BP
algorithm in decoding large non-orthogonal STBCs. 5 BP it­
erations are used in all the simulations.

A. Uncoded BER performance oflarge STBCs from CDA:

BP decoding achieves near SISO AWGN performancefor large
STBCs: In Fig. 4, we plot the uncoded BER performance of
the BP algorithm in decoding 8 x 8 (64 dimensions), 16 x 16
(256 dimensions) and 24x 24 (576 dimensions) non-orthogonal
STBCs from CDA for BPSK and N; = N», as a function
of average received SNR per receive antenna, I [I] . BER
plots for STBCs with ILL (i.e., 6 = t = 1) and FD-ILL (i.e.,

6 = eV5j , t = ~) are shown. For comparison purposes,
we have plotted the MMSE performance as well as the SISO
AWON performance. From Fig. 4, the following two inter­
esting observations can be made :

• BERs ofboth ILL and FD-ILL STBCs with BP decoding
improve and approach SISO AWON performance as the
number of dimensions (i.e., N [ ) is increased. For e.g.,
the performance of 24 x 24 FD-ILL STBC is just about
1.5 dB away from SISO AWON performance at 10- 3

BER. This is due to the inherent ability of BP to per­
form well in large systems. It is noted that linear MMSE
decoding does not exhibit such large system behavior.

2006
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10'2 , - .. ' (1):8x8 STBC(FD- ILL), MMSE I iP't'{~~~~
,- .. ' (2) 16x16 STBC (FD-ILL), MMSE ~ ... ."'..L .....j

, - .. ' (3)24x24STBC(FD-ILL), MMSE
- B - 8x8STBC(ILLonly), BP
- A- 16x16 STBC(ILLonly), BP

10'3 - ~- 24x24STBC(ILLonly), BP
-a- 8x8STBC(FD-ILL),BP
.....I!r 16x16 STBC(FD-ILL), BP
-+- 24x24 STBC (FD-ILL), BP
- SISOAWGN

10.4 '---_ --'--_ ---'-__'---_--'--_--'-_---.J__-'---_--'

o

Fig. 4. Uncoded HER of HI' decoding of 8 x 8, 16 x 16 and 24 x 24
non-orthogonal STBCs. ILL (8 = t = 1) and FD-ILL (0 = eV5j , t = ej )
STHCs. N , = N«, HI'SK, 5 HI' iterations. BP decoding achieves near SISO
AWGN performance for large sized STBes.

• With the proposed BP decoding, the BER of ILL STBC
is worse than the BER of FD-ILL STBC. This perfor­
mance gap between ILL and FD-ILL STBCs diminishes
with increasing Nt , indicating that for large N, = N;
ILL feature ofthe STBC with 6 = t = 1 is good enough.

Turbo coded BER performance: Figure 5 shows the turbo
coded BER performance ofthe BP detector in a STBC MIMO
system with BPSK and24 x24 FD-ILL STBC (i.e ., 6 = eV5j ,
t = ~) and N, = N; = 24. Rate-l/3 and rate-l/2 turbo
codes achieving 8 bps/Hz and 12 bps/Hz spectral efficien­
cies, respectively, are used. The theoretical minimum SNRs
required to achieve these 8 and 12 bps/Hz capacities in a
N; = N; = 24 MIMO channel, as computed from the er­
godic capacity formula [1], are also shown in Fig. 5. From
Fig. 5, it can be seen that the vertical fall in coded BER oc­
curs only about 2.5 dB away from the theoretical minimum
SNRs, which is very good in terms ofneamess to capacity.

Effect ofSpatial Correlation: In generating the BER results
in Figs. 4 and 5, we have assumed i.i.d. fading . How­
ever, MIMO propagation conditions witnessed in practice of­
ten render the i.i.d , fading model as inadequate. More realis­
tic MIMO channel models that take into account the scatter­
ing environment, spatial correlation, etc., have been investi­
gated in the literature [20]-[22]. For example, spatial corre­
lation at the transmit and/or receive side can affect the rank
structure of the MIMO channel resulting in degraded MIMO
capacity [20]. The structure of scattering in the propagation
environment can also affect the capacity [21]. Hence, it is
of interest to investigate the performance of the proposed BP
decoder in more realistic MIMO channel models. Towards
this end, in this subsection, we adopt the correlated MIMO
channel model in [22], which incorporates the single spatial
correlation parameter, r, presented in [23], to a matrix chan­
nel model. Figure 6 shows the simulated uncoded BER per­
formance of 16 x 16 FD-ILL STBC with BPSK, N, = 16,
N; = 16,17 for the correlation channel model in [22] with
r = 0.12. Performance of the same with i.i.d fading and
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sions. Effect of spatial correlation on the performance of the
proposed BP decoding was presented. Though we have re­
ported results only for BPSK in this paper, we have extended
the proposed BP approach to higher order modulation as well.
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Fig. 5. Turbo coded BER of BP decoding of 24 x 24 non-orthogonal FD­
ILL STBC (0 = e V5j , t = J). N, = NT = 21, BPSK, turbo code rates:
rate-I /2 (12 bps/Hz) and rate-l/3 (8 bps/Hz). 5 BP iterations. BP decoding
achieves near-capacity performance to within about 2.5 dBfrom capacity.
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Fig. 6. Effect of spatial correlation on the uncoded BER of BP decoding
of 16 x 16 non-orthogonal I'D-ILL STBC (0 = eV5j ,t = ej

) . N; =
16, NT = 16,17, BPSK, 5 BP iterations, r = 0.12. Spatial correlation
degrades achieved diversity order compared to that achieved in i.i.dfading.
Increasing NT alleviates this performance loss.
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N, = N; = 16 is also plotted for comparison. From Fig.
6, it can be observed that compared to i.i.d fading, there is a
loss in diversity order in spatial correlation for N, = N T = 16;
further, use ofmore receive antennas (NT = 17, N, = 16) alle­
viates this loss in performance. We note that the proposed BP
based decoding can be used to decode perfect codes [24],[25]
of large dimensions as well.

V. CONCLUSION

We presented a low-complexity decoding scheme based on
BP to decode non-orthogonal STBCs from CDA having large
dimensions. The proposed BP scheme involved message pass­
ing on Markov random field representation ofthe STI3C MIMO
system. Simulation results showed that the BP approach to
large STBC decoding is quite effective, achieving near-optimal
and near-capacity performance in STBCs with large dimen-
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