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Abstract—Non-orthogonal space-time block codes (STBC) with
large dimensions are attractive because they can simultaneously
achieve both high spectral efficiencies (same spectral efficiency
as in V-BLAST for a given number of transmit antennas) as well
as full transmit diversity. Decoding of non-orthogonal STBCs
with large dimensions has been a challenge. In this paper, we
present a reactive tabu search (RTS) based algorithm for decod-
ing non-orthogonal STBCs from cyclic division algebras (CDA)
having large dimensions. Under i.i.d fading and perfect channel
state information at the receiver (CSIR), our simulation results
show that RTS based decoding of 12 x 12 STBC from CDA and
4-QAM with 288 real dimensions achieves i) 10~ uncoded BER
at an SNR of just 0.5 dB away from SISO AWGN performance,
and 4i) a coded BER performance close to within about 5 dB of
the theoretical MIMO capacity, using rate-3/4 turbo code at a
spectral efficiency of 18 bps/Hz. RTS is shown to achieve near
SISO AWGN performance with less number of dimensions than
with LAS algorithm (which we reported recently) at some extra
complexity than LAS. We also report good BER performance of
RTS when i.i.d fading and perfect CSIR assumptions are relaxed
by considering a spatially correlated MIMO channel model, and
by using a training based iterative RTS decoding/channel esti-
mation scheme.
I. INTRODUCTION

MIMO systems that employ non-orthogonal space-time block
codes (STBC) from cyclic division algebras (CDA) for ar-
bitrary number of transmit antennas, N;, are attractive be-
cause they can simultaneously provide both full-rate (i.e., V;
complex symbols per channel use, which is same as in V-
BLAST) as well as full transmit diversity [1],[2]. The 2 x 2
Golden code is a well known non-orthogonal STBC from
CDA for 2 transmit antennas [3]. High spectral efficiencies
of the order of tens of bps/Hz can be achieved using large
non-orthogonal STBCs. For e.g.,a 16 x 16 STBC from CDA
has 256 complex symbols in it with 512 real dimensions; with
16-QAM and rate-3/4 turbo code, this system offers a high
spectral efficiency of 48 bps/Hz. Decoding of non-orthogonal
STBCs with such large dimensions, however, has been a chal-
lenge. Sphere decoder and its low-complexity variants are
prohibitively complex for decoding such STBCs with hun-
dreds of dimensions. Recently, we proposed a low-complexity
near-ML achieving algorithm to decode large non-orthogonal
STBCs from CDA; this algorithm, which is based on bit-
flipping approach, is termed as likelihood ascent search (LA S)
algorithm [4]-[6]. In this paper, we present a reactive tabu
search (RTS) based approach to near-ML decoding of non-
orthogonal STBCs with large dimensions.

Key attractive features of the proposed RTS based decod-
ing are its low-complexity and near-ML performance in sys-
tems with large dimensions (e.g., hundreds of dimensions).
While creating hundreds of dimensions in space alone (e.g.,
V-BLAST) requires hundreds of antennas, use of non-orthogonal
STBCs from CDA can create hundreds of dimensions with
just tens of antennas (space) and tens of channel uses (time).
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Given that 802.11 smart WiFi products with 12 transmit an-
tennas' at 2.5 GHz are now commercially available [7] (which
establishes that issues related to placement of many anten-
nas and RF/IF chains can be solved in large aperture com-
munication terminals like set-top boxes/laptops), large non-
orthogonal STBCs (e.g., 16 x 16 STBC from CDA) in com-
bination with large dimension near-ML decoding using RTS
can enable communications at increased spectral efficiencies
of the order of tens of bps/Hz (note that current standards
achieve only < 10 bps/Hz using only up to 4 tx antennas).

Tabu search (TS), a heuristic originally designed to obtain ap-
proximate solutions to combinatorial optimization problems
[8]-[10], is increasingly applied in communication problems
[11]-[13]. Fore.g., in [11], design of constellation label maps
to maximize asymptotic coding gain is formulated as a quadra-
tic assignment problem (QAP), which is solved using RTS
[10]. RTS approach is shown to be effective in terms of BER
performance and efficient in terms of computational com-
plexity in CDMA multiuser detection [12]. In [13], a fixed TS
based detection in V-BLAST is presented. In this paper, we
establish that RTS based decoding of non-orthogonal STBCs
can achieve excellent BER performance (near-ML and near-
capacity performance) in large dimensions at practically af-
fordable low-complexities. We also present a stopping-criteri-
on for the RTS algorithm. RTS for large dimension non-
orthogonal STBC decoding has not been reported so far. Our
results in this paper can be summarized as follows:

o Under i.i.d fading and perfect channel state information
at the receiver (CSIR), our simulation results show that
RTS based decoding of 12 x 12 STBC from CDA and 4-
QAM (288 real dimensions) achieves i) 10~ uncoded
BER at an SNR of just 0.5 dB away from SISO AWGN
performance, and i) a coded BER performance close to
within about 5 dB of the theoretical capacity using rate-
3/4 turbo code at a spectral efficiency of 18 bps/Hz.

o Compared to the LAS algorithm we reported recently in
[4]-[6], RTS achieves near-SISO AWGN performance
with less number of dimensions than with LAS; this is
achieved at some extra complexity compared to LAS.

o We report good BER performance when i.i.d fading and
perfect CSIR assumptions are relaxed by adopting a spa-
tially correlated MIMO channel model, and a training
based iterative RTS decoding/channel estimation scheme.

II. NON-ORTHOGONAL STBC MIMO SYSTEM MODEL

Consider a STBC MIMO system with multiple transmit and
receive antennas. An (n, p, k) STBC is represented by a ma-

112 antennas in these products are now used only for beamforming.
Single-beam multi-antenna approaches can offer range increase and inter-
ference avoidance, but not spectral efficiency increase.
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trix X. € C™**?, where n and p denote the number of transmit
antennas and number of time slots, respectively, and &k de-
notes the number of complex data symbols sent in one STBC
matrix. The (4, j)th entry in X, represents the complex num-
ber transmitted from the ith transmit antenna in the jth time
slot. The rate of an STBC is %. Let N, and N; = n denote
the number of receive and transmit antennas, respectively.
Let H, € CN-XNt denote the channel gain matrix, where
the (i, j)th entry in H, is the complex channel gain from the
jth transmit antenna to the ¢th receive antenna. We assume
that the channel gains remain constant over one STBC ma-
trix duration. Assuming rich scattering, we model the entries
of H. as CN(0,1). The received space-time signal matrix,
Y. € CNXP_can be written as

Yc = HcXc + NC7 (1)
where N, € CM~*P is the noise matrix at the receiver and
its entries are modeled as i.i.d CA/(0,02 = &tEs), where
FE is the average energy of the transmitted symbols, and + is
the average received SNR per receive antenna [14], and the
(i, j)th entry in Y, is the received signal at the ith receive an-
tenna in the jth time-slot. Consider linear dispersion STBCs,
where X, can be written in the form [14]

k
X, = Y oA, @

. i=1 .
where ) is the ith complex data symbol, and AW ¢ oNexp
is its corresponding weight matrix. The received signal model
in (1) can be written in an equivalent V-BLAST form as

k
ye = »_ 2 (Heal”) +n, = Hexe +ne, ©)
i=1

where y, € CN-PX1 = yec (Y,), H, € CN-PXNip — I, ®
H,), I, is p x p identity matrix, al? € CNPx1 = yec (AD),
n, € CN"PXl = yec(N,), x, € CF*1 whose ith entry is
the data symbol xﬁi), and ﬁc € CNrPxk whose ith column
is f—ic agi), i = 1,2,--- k. Each element of x. is an M-
PAM/M-QAM symbol. M-PAM symbols take discrete val-
ues from A 2 {aq,g=1,--- ,M},where ag = (2¢ —1— M),
and M-QAM is nothing but two PAMs in quadrature. Let y.,
H,, x., n. be decomposed into real and imaginary parts as:

Ye =Y1+JYQ, Xc=X1+jXq,

n. =ns +jng, H.=H+jHg. (4)
Further, we define H, € R2N-px2k v c R2N-pX1 x ¢
A%X1 and n, € R2N-PX1 g5

H; - H
H, = ( HIQ H? ) y  Yr = [y,}-’ yz]Ta (5)
X, = [x] X51T7 n, = [n] ng]T' (6)
Now, (3) can be written as
yr = Hyx.+n,. @)

Henceforth, we work with the real-valued system in (7). For
notational simplicity, we drop subscripts r in (7) and write

y = Hx+n, )
where H = H, € R?NVPx2%k y — y ¢ RPVrPXl x — x, €
A%**! and n = n, € R?¥PX1 We assume that the channel
coefficients are known at the receiver but not at the transmit-
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A. High-rate Non-orthogonal STBCs from CDA

We focus on the decoding of square (i.e., n =p= V), full-
rate (i.e., k = pn = N?), circulant (where the weight ma-
trices Ag’)’s are permutation type), non-orthogonal STBCs
from CDA [1], whose construction for arbitrary number of
transmit antennas n is given by the matrix in Eqn.(9.2) given
at the bottom of this column. In (9.a), w, = e"%,j =+/—1,
and dy, 0 < u,v < n — 1 are the n? data symbols from
a QAM alphabet. When 6 = eV5iand t = €, the STBC
in (9.a) achieves full transmit diversity (under ML decoding)
as well as information-losslessness [1]. When 6 = ¢ = 1,
the code ceases to be of full-diversity (FD), but continues to
be information-lossless (ILL). High spectral efficiencies with
large n can be achieved using this code construction. How-
ever, since these STBCs are non-orthogonal, ML detection
gets increasingly impractical for large n. Consequently, a key
challenge in realizing the benefits of these large STBCs in
practice is that of achieving near-ML performance for large
n at low decoding complexities. The RTS based decoding
algorithm we present in the following section essentially ad-
dresses this challenge.

ITI. RTS ALGORITHM FOR LARGE NON-ORTHOGONAL
STBC DECODING
In this section, we present the RTS algorithm, which is an
iterative local search algorithm, for decoding non-orthogonal
STBCs. The goal is to get X, an estimate of x, given y and H.

Neighborhood Definition: Letag € A, g = 1,---, M. De-
fine a set \(aq) as a fixed subset of A\a,, which we refer
to as the symbol neighborhood of a,. We choose the cardi-
nality of this set to be the same for all aq, ¢ = 1,--- , M;
i.e., we take [N'(aq)| = N, Vq. Note that the maximum and
minimum values of N are M — 1 and 1, respectively. For
e.g., A = {-3,-1,1,3} for 4-PAM, and choosing N to be
2, N(_S) = {-1,1}, N(_l) = {-3,1}, N(l) = {-1,3},
N(3) = {1,—1} are possible symbol neighborhoods. Let
wy(aq), v =1,---, N denote the vth element in N'(a,); i.e.,
we say wy(aq) is the vth symbol neighbor of a,.

Let x(m = [z{™ z{™ ... 2{™)] denote the data vector be-
longing to the solution space, in the mth iteration, where
(™ = aq, q € {1,---, M}. We refer to the vector

K4
2™ (u,v) = [zim)(u, ) zém)(u, DR zézn)(u, v)], (10)
as the (u, v)th vector neighbor (or simply the (u, v)th neighbor)
of x("), w=1,... 2k, v =1,---,N,if i) x("™) differs from
z("™) (u,v) in the uth coordinate, and ii) the uth element of
z("™) (u, v) is the vth symbol neighbor of z{™. That s,

(m) :
2™ (u,0) = { Ti forizu

¢ we(z™)  for i = u.

So we will have 2k IV vectors which differ from a given vector
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in the solution space in only one coordinate. These 2k N vec-
tors form the neighborhood of the given vector. We note that
neighborhood definition based on bit-flipping [4] is a special
case of the above neighborhood definition for V = 1, M = 2.

The algorithm is said to execute a move (u,v) if x(™+1) =
2™ (u,v). The number of candidates to be considered for
a move in the mth iteration is 2k/N. Since the coordinate
that changes in a move can take M possible values for M-
PAM, the total number of possible moves is 2kM N. The
tabu value of a move, which is a non-negative integer, means
that the move cannot be considered for that many number of
subsequent iterations, unless certain conditions are satisfied.

Tabu Matrix: A tabu_matrix of size 2kM x N is the matrix
whose entries denote the tabu values of moves. The (r, s)th
entry of the tabu_matrix corresponds to the move (u, v) from
x(™ whenu = 2] 4+ 1, v = s and 2™ = a,, where
qg=mod(r —1,M) + 1.

RTS Algorithm: Let g™ be the vector which has the least
ML cost found till the mth iteration of the algorithm. Let
lrep be the average length (in number of iterations) between
two successive occurrences of the same solution vector (rep-
etitions), at the end of an iteration. Tabu period, P, a dy-
namic non-negative integer parameter, is defined. If a move
is marked as tabu in an iteration, it will remain as tabu for P
subsequent iterations. The algorithm starts with an initial so-
lution vector x(©), which, for e.g., could be the MMSE or MF
output vector. Set g(® = x(© [, = 0,and P = Py. All
the entries of the tabu_matrix are set to zero. The following
steps 1) to 3) are performed in each iteration. Consider mth
iteration in the algorithm, m > 0.

Step 1): Define Ymf 2 HTy, R 2 HTH, and f(™ =

Rx(™ —y,.;. Lete™ (u,v) = 2™ (u,v) — x(™). The
ML costs of the 2k N neighbors of x(™), namely, z("™) (u, v),
u=1,---,2k,v=1,---, N, are computed as

B(z™ (u,v)) = (x(m) + ™ (u, v))TR (x(m) + ™ (u, v))
—2(x"™ + ™ (u,0)) " yms
= ¢(x") +2(e"™ (u,)) "Rx™
+ (e (u,0)) TR e™ (u,v) — 2(e"™ (u,v))  yms
= ¢(x™) +2e0™ (u,0) ™ + (5™ (u,v))* Ruw, (12)

2 C (eS‘m) (u,v))
where e{™ (u,v) is the uth element of (™ (u,v), fi™ is
uth element of £(™)_ and R, is the (u, u)th element of R.
#(x(™)) on the RHS in (12) can be dropped since it will not
affect the cost minimization. Let

arg min (m)
C . 13
BT Ol () (13)

(u1,v1) =

The move (u1, v1) is accepted if any one of the following two
conditions is satisfied:

i) p(2™ (u1, 1)) < o(g™)
i4) tabu_matrix((u1 —1)M +q,v1) = O where q : ™ = aq € A.

If move (uq,v1) is accepted, then make

x(m-‘rl) — X(m) _‘_e(m)(ul’vl). (14)
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If move (u1,v;) is not accepted (i.e., neither of conditions 4)

and 41) is satisfied), find (ug, v2) such that
arg min

(m)
U,’Ulu#ul’v#ful C(eu (u7v))7 (15)

(uz,v2) =
and check for acceptance of the (ug,v2) move. If this also
cannot be accepted, repeat the procedure for (us, v3), and so
on. Ifall the 2k N moves are tabu, then all the tabu_matrix en-
tries are decremented by the minimum value in the tabu_matrix;
this goes on till one of the moves becomes permissible. Let
(u',v") be the index of the neighbor with the minimum cost
for which the move is permitted. The variables ¢’, ¢”,v"”

are implicitly defined by :cfl',") = ag = wyr (ggi’,”“)), and
.'L'fj/n'i'l) = aq, Where ag,aqr € A.

Step 2: After a move is done, the new solution vector is
checked for repetition. For the channel model in (8), repe-
tition can be checked by comparing the ML costs of the so-
lutions in the previous iterations. If there is a repetition, the
length of the repetition from the previous occurrence is found,
the average length, [, is updated, and the tabu period P is
modified as P = P + 1. If the number of iterations elapsed
since the last change of the value of P exceeds 8l,.p, for a
fixed 8 > 0, make P = P — 1. The minimum value of P,
however, will be 1. Note that this step, if executed, also qual-
ifies as the one which changed P. After a move (u/,v’) is
accepted, if p(x(™+1) < ¢(g(™), make

tabu_matrix (v’ — 1)M + ¢',v') = 0,
tabu_matrix (v’ — 1)M + ¢",v") = 0, (16)

and g(m+1) = x(m+1); ¢|se,
tabu_matrix (' — 1 )M + ¢',v') = P +1,
tabu_matrix (u' — )M + ¢",v") = P+1, a7

and g(m+1) — gm).
Step 3): Update the entries of the tabu_matrix as
tabu_matrix (r,s) = max{tabu_matrix (r,s) — 1,0}, (18)
forr=1,---,2kM,s=1,---,N. (™ is updated as
FOomtD = pm) oM R, (19)
where R, is the v/th column of R.

Stopping criterion: The algorithm can be stopped based on a
fixed number of iterations. Though convergence can be slow
at low SNRs (typ. hundreds of iterations), it can be fast (typ.
tens of iterations) at moderate to high SNRs. So rather than
fixing a large number of iterations to stop the algorithm ir-
respective of the SNR, we use an efficient stopping criterion
which makes use of the knowledge of the best ML cost in a
given iteration, as follows.

Since the ML criterion is to minimize |Hx — y||®, the mini-
mum value of the objective function x” H'Hx — 2x"Hy,
is always greater than —y”'y. We stop the algorithm when
the least ML cost achieved in an iteration is within certain
range of the global minimum, which is —y”y. We stop the
algorithm in the mth iteration, if the condition

9(&"™) — (=y"y)|

| —yTyl

< m (20)
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is met with at least min_iter iterations being completed to
make sure the search algorithm has ‘settled.” The bound is
gradually relaxed as the number of iterations increase and the
algorithm is terminated when
=yl

In (20) and (21), oy and a are positive constants. In ad-
dition, we terminate the algorithm whenever the number of
repetitions of solutions exceeds max_rep. Also, the maximum
number of iterations is set to max_iter. We have found that use
of the following stopping criterion parameters results in low
complexity without compromising much on the performance
(compared to a fixed number of iterations of 300) for 4-QAM:
min_iter = 20, max_iter = 300, max_rep = 75, a1 = 0.05,
and ag = 0.0005.

< moa.

IV. SIMULATION RESULTS
We evaluated the uncoded/coded BER performance of the
RTS algorithm in decoding non-orthogonal STBCs with § =
t =1(i.e,ILL)and § = V¥, t = ¢l (i.e., FD-ILL) through
simulations. The following RTS parameters are used in all the
simulations: MMSE initial vector, Py = 2,8 = 1,0.1,a; =
5%, az = 0.05%, max_rep=75, max_iter = 300, min_iter = 20.

A. Uncoded BER performance of RTS:

RTS versus LAS Performance: In Fig. 1, we plot the un-
coded BER of the RTS algorithm as a function of average
received SNR per receive antenna, -y, in decoding 4 x 4 (32
dimensions), 8 x 8 (128 dimensions) and 12 x 12 (288 dimen-
sions) non-orthogonal ILL STBCs for 4-QAM and N; = N,..
Perfect CSIR and i.i.d fading are assumed. For the same set-
tings, performance of the LAS algorithm in [4]-[6] are also
plotted for comparison. MMSE initial vector is used in both
RTS and LAS. As a reference, we have plotted the BER per-
formance on a SISO AWGN channel as well. From Fig. 1,
the following interesting observations can be made:

« the BER of RTS algorithm improves and approaches SISO
AWGN performance as N; = N, (i.e., STBC size) is in-
creased; e.g., performance close to within 0.5 dB from
SISO AWGN performance is achieved at 10~3 uncoded
BER in decoding 12 x 12 STBC with 288 real dimensions.
RTS algorithm performs better than LAS algorithm (see
RTS and LAS BER plots for 4 x 4 and 8 x 8 STBCs).
Further, while both RTS and LAS algorithms exhibit
large system behavior (i.e., BER improves as N; = N,.
is increased), RTS is able to achieve nearness to SISO
AWGN performance at 1072 BER with less number of
dimensions than with LAS. This is evident by observing
that, while LAS requires 512 dimensions (16x16 STBC)
to achieve 1 dB closeness to SISO AWGN performance
at 10~ BER, RTS is able to achieve even 0.5 dB close-
ness with just 288 dimensions (12 x 12 STBC). RTS is
able to achieve this better performance because, while
the bit/symbol-flipping strategies are similar in both RTS
and LAS, the inherent escape strategy in RTS allows it
to move out of local minimas and move towards better

2Qur simulation results show that the BER performance of FD-ILL and
ILL STBCs with RTS decoding are almost the same.

1996
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Fig. 1. Uncoded BER of RTS decoding of 4 X 4, 8 X 8 and 12 X 12 non-
orthogonal STBCs from CDA. Ny = N,,ILL STBCs (6 =t = 1),4-QAM.
RTS achieves near SISO AWGN performance for increasing Ny = Ny (i.e.,
STBC size). RTS performs better than LAS.

solutions. Consequently, RTS incurs some extra com-
plexity compared to LAS, without increase in the order
of complexity.

RTS performance in V-BLAST: A similar observation can be
made with uncoded BER of RTS detection in V-BLAST in Fig.
2 for N, = N, and 4-QAM. From Fig. 2, it is seen that LAS
requires 128 dimensions (64 x 64 V-BLAST) to achieve per-
formance within 1 dB of SISO AWGN performance at 10~3
BER, whereas RTS is able to achieve even better closeness
with just 64 dimensions (32 x 32 V-BLAST). In summary,
the ability to achieve near SISO AWGN performance at less
dimensions than LAS is an attractive feature of RTS.

B. Turbo coded BER performance of RTS

Figure 3 shows the rate-3/4 turbo coded BER of RTS decod-
ing of 12 x 12 non-orthogonal ILL STBC with N; = N,- and
4-QAM (corresponding to a spectral efficiency of 18 bps/Hz),
under perfect CSIR and i.i.d fading. The theoretical mini-
mum SNR required to achieve 18 bps/Hz spectral efficiency
on a N; = N, =12 MIMO channel with perfect CSIR and i.i.d
fading is 4.27 dB (obtained through simulation of the ergodic
capacity formula [14]). From Fig. 3, it is seen that RTS de-
coding is able to achieve vertical fall in coded BER close to
within about 5 dB from the theoretical minimum SNR, which
is good nearness to capacity performance. This nearness to
capacity can be further improved by 1 to 1.5 dB if soft deci-
sion values, proposed in [5], are fed to the turbo decoder.

C. Iterative RTS Decoding/Channel Estimation

Next, we relax the perfect CSIR assumption by considering
a training based iterative RTS decoding/channel estimation
scheme. Transmission is carried out in frames, where one
N x N, pilot matrix (for training purposes) followed by Ny
data STBC matrices are sent in each frame. One frame length,
T, (taken to be the channel coherence time) is 7' = (Ng +
1)N; channel uses. The proposed scheme works as follows:
i) obtain an MMSE estimate of the channel matrix during the
pilot phase, i7) use the estimated channel matrix to decode
the data STBC matrices using RTS algorithm, and 4i3) iterate
between channel estimation and RTS decoding for a certain
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Fig. 2. Uncoded BER of RTS detection of V-BLAST with Ny = N,
and 4-QAM. RTS achieves near SISO AWGN performance for increasing
N¢ = Ny. RTS performs better than LAS.

Fig. 3. Turbo coded BER of RTS decoding of 12 X 12 non-orthogonal ILL
STBC with Ny = N;, 4-QAM, rate-3/4 turbo code, and 18 bps/Hz. BER
of RTS with estimated CSIR approaches close to that with perfect CSIR for
increasing N (i.e., slow fading).

number of times. For 12 x 12 ILL STBC, in addition to per-
fect CSIR performance, Fig. 3 also shows the performance
with CSIR estimated using the above iterative RTS decod-
ing/channel estimation scheme for Ny = 8 and Ny = 20. 2
iterations between RTS decoding and channel estimation are
used. With Ny = 20 (which corresponds to large coherence
times, i.e., slow fading) the BER and bps/Hz with estimated
CSIR get closer to those with perfect CSIR.

D. Effect of MIMO Spatial Correlation

In Figs. 1 to 3, we assumed i.i.d fading. But spatial corre-
lation at transmit/receive antennas and the structure of scat-
tering and propagation environment can affect the rank struc-
ture of the MIMO channel resulting in degraded performance
[15],[16]. We relaxed the i.i.d. fading assumption by consid-
ering the correlated MIMO channel model proposed by Ges-
bert et al in [16], which takes into account carrier frequency
(fc), spacing between antenna elements (d:, d), distance be-
tween tx and rx antennas (R), and scattering environment. In
Fig. 4, we plot the uncoded BER of RTS decoding of 12 x 12
FD-ILL STBC with perfect CSIR in 7) i.i.d. fading, and i7)
correlated MIMO fading model in [16]. It is seen that, com-
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Fig. 4. Effect of spatial correlation on the performance of RTS decoding
of 12 x 12 FD-ILL STBC with Ny = 12, N, = 12, 14, 4-QAM, rate-3/4
turbo code, 18 bps/Hz. f. = 5 GHz, R = 500m, S = 30, Dy = D, = 20
m, 0 = 0, = 90°, Nrdr = Nidy = 72 cm. Spatial correlation degrades
achieved diversity order compared to i.id. Increasing Ny alleviates this
performance loss.

pared to i.i.d fading, there is a loss in diversity order in spatial

correlation for N; = N, = 12; further, use of more receive
antennas (N, = 14, N, = 12) alleviates this loss in perfor-
mance. Finally, we note that have carried out simulations of
RTS decoding for 16-QAM as well, where similar results re-
ported here for 4-QAM are observed. The RTS decoding can
be used to decode perfect codes of large dimensions as well.
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