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Abstract—Traditionally, channel estimation in orthogonal time
frequency space (OTFS) is carried out in the delay-Doppler (DD)
domain by placing pilot symbols surrounded by guard bins in the
DD grid. This results in reduced spectral efficiency as the guard
bins do not carry information. In the absence of guard bins, there
is leakage from pilot symbols to data symbols and vice versa.
Therefore, in this paper, we consider an interleaved pilot (IP)
placement scheme with a lattice-type arrangement (which does
not have guard bins) and propose a deep learning architecture
using recurrent neural networks (referred to as IPNet) for
efficient estimation of DD domain channel state information. The
proposed IPNet is trained to overcome the effects of leakage from
data symbols and provide channel estimates with good accuracy
(e.g., the proposed scheme achieves a normalized mean square
error of about 0.01 at a pilot SNR of 25 dB). Our simulation
results also show that the proposed IPNet architecture achieves
good bit error performance while being spectrally efficient. For
example, the proposed scheme uses 12 overhead bins (12 pilot
bins and no guard bins) for channel estimation in a considered
frame while the embedded pilot scheme uses 25 overhead bins
(1 pilot bin and 24 guard bins).

Index Terms—OTFS modulation, DD channel estimation, in-
terleaved pilots, deep learning, recurrent neural networks.

I. INTRODUCTION

High-mobility support is one of the critical requirements
in next generation wireless systems. However, high-mobility
scenarios are associated with high Doppler spreads in the
channel which are detrimental to performance of multicarrier
systems such as orthogonal frequency division multiplexing
(OFDM). Orthogonal time frequency space (OTFS) modula-
tion overcomes this issue by multiplexing information symbols
in the delay-Doppler (DD) domain and viewing the channel in
the DD domain where the channel varies slowly and is sparse,
thereby offering robust performance in high Doppler spreads
[1]-[3]. The time-invariance and sparsity of the DD channel
simplifies the channel estimation task in OTFS [4],[5].

Several approaches for DD domain channel estimation have
been reported in the OTFS literature [6]-[10]. In [6], the
authors consider an impulse based channel estimation scheme,
wherein an exclusive pilot frame consisting of one pilot
symbol and zeros elsewhere in the frame is used for channel
estimation. This scheme is simple but it results in poor spectral
efficiency. The authors in [7],[8] use an embedded pilot frame,
where the pilot symbol is surrounded by some guard bins with
zeros and the remaining bins in the frame are occupied by
data symbols. In this embedded pilot approach, the number of
guard bins are chosen to accommodate the maximum delay
spread and Doppler shift of the channel. This ensures that

This work was supported in part by the J. C. Bose National Fellowship,
Department of Science and Technology, Government of India.

the spread from the pilot symbol does not interfere with the
data symbols and vice versa. Although this alleviates the
effects of interference between pilot and data symbols, this
approach also incurs spectral efficiency loss due to guard
bins. Estimation schemes based on compressed sensing/sparse
Bayesian learning have been reported in the literature [9],[10].

Our current contribution differs from past works in two
ways: 1) we consider an interleaved pilot scheme with no
guard bins in the frame (hence offers better spectral efficiency),
and 2) for this interleaved pilot setting, we propose a deep
learning (DL) architecture using recurrent neural networks
(RNN) for efficient channel estimation. The considered inter-
leaved pilot scheme uses a lattice-type pilot structure in the
DD grid (similar to the pilot structure in the time-frequency
grid in OFDM [11]). Although the interleaved pilot approach
is spectrally efficient, the absence of guard bins in the frame
leads to leakage of pilot symbols into data symbols and vice
versa. It is therefore important to pre-process the received
pilot symbols before estimates of the channel can be obtained.
RNNs have been used in the deep learning literature for
drawing inference from correlated sequences [12]. In the
proposed interleaved pilot scheme for channel estimation, the
pilot symbols leak into the adjacent data bins resulting in a
sequence of correlated received symbols. Therefore, the use
of RNNs can be a natural approach for making inference (i.e.,
estimating the channel) from the correlated received symbols
in the proposed scheme. Accordingly, we propose an RNN
based DL network, which we refer to as interleaved pilot
network (IPNet) for DD channel estimation. The proposed
IPNet is trained to overcome the effects of leakage from data
symbols and provide channel estimates with good accuracy.
The obtained channel estimates are then used to remove the
effect of leakage from pilot symbols in the detection of data
symbols. To further improve the accuracy of the channel
estimates, the detected symbols are used to further reduce
the leakage from data symbols and another set of channel
estimates is obtained from IPNet. This process is carried out in
an iterative fashion. Our simulation results show the proposed
IPNet achieves good mean square error and bit error rate
performance with better spectral efficiency.

Notations: tj represents the jth entry in the vector t.
⌊x⌋ represents the flooring operation on x. (x)M denotes
the modulo M operation on x. E[.] denotes the expectation
operator and ∥A∥F denotes the Frobenius norm of matrix A.

The rest of the paper is organized as follows. The OTFS
system model and the considered interleaved pilot scheme
is presented in Sec. II. The details of the proposed IPNet
for channel estimation are presented in Sec. III. Results



Fig. 1: OTFS modulation scheme.

and discussions are presented in Sec. IV. Conclusions are
presented in Sec. V.

II. OTFS SYSTEM MODEL

The block diagram of the OTFS modulation scheme is
shown in Fig. 1. The following set of operations are carried
out at the OTFS transmitter. Information symbols are placed
in the DD domain and they are converted to TF domain
using inverse symplectic finite Fourier transform (ISFFT). The
TF domain symbols are then mapped to time domain using
Heisenberg transform. The resulting time domain signal is
transmitted through the channel. At the OTFS receiver, the
following inverse operations are carried out. First, the received
time domain signal is converted to TF domain using Wigner
transform. The TF domain symbols are then converted to DD
domain using symplectic finite Fourier transform (SFFT).

Information symbols, a[n,m]s, each drawn from a modu-
lation alphabet A are placed in an M ×N DD grid given by{(

l
M∆f ,

k
NT

)
, l = 0, · · · ,M − 1, k = 0, · · · , N − 1

}
, where

M is the number of delay bins, N is the number of Doppler
bins, ∆f is the subcarrier spacing, and T = 1/∆f . Bin sizes
in the delay and Doppler domains are given by 1/M∆f and
1/NT , respectively. The a[n,m]s are converted to TF domain
symbols A[k, l]s using the ISFFT operation, as

A[k, l] =
1√
MN

N−1∑
n=0

M−1∑
m=0

a[n,m]ej2π(
nk
N −ml

M ), (1)

for l = 0, · · · , N−1 and k = 0, · · · ,M−1. The time domain
signal a(t) is obtained from the TF symbols A[n,m]s using
Heisenberg transform. Denoting the transmit pulse as ptx(t),
a(t) is obtained as

a(t) =

N−1∑
l=0

M−1∑
k=0

A[k, l]ptx(t− nT )ej2πk∆f(t−lT ), (2)

which is transmitted through the time-varying channel. Let
g(τ, ν) denote the complex baseband channel response in the
DD domain. Then,

g(τ, ν) =

L−1∑
i=0

giδ(τ − τi)δ(ν − νi), (3)

where L is the number of channel paths in the DD domain, δ
is the Kronecker delta function, and gi, τi, and νi denote the
complex channel gain, delay, and Doppler shift, respectively,

Fig. 2: Pilot, guard, and data symbol placements in interleaved
pilot and embedded pilot frames.

corresponding to the ith path. At the OTFS receiver, the time
domain signal, b(t), is given by

b(t) =

∫
ν

∫
τ

g(τ, ν)a(t− τ)ej2πν(t−τ)dτdν + w(t), (4)

where w(t) represents the additive noise. At the OTFS re-
ceiver, a matched filtering operation is carried out on the
received time domain signal b(t) with a receive pulse denoted
by prx(t), which results in the TF domain cross-ambiguity
function, given by

Fprx,b(t, f) =

∫
t′
p∗rx(t

′ − t)b(t′)e−j2πf(t′−t)dt′, (5)

where (·)∗ represents the complex conjugation operation. The
transmit and receive pulse are chosen such that they satisfy the
biorthogonality condition, i.e., Fhrxhtx

(t, f)|t=nT,f=m∆f =
δ(n)δ(m). Sampling (5) at t = lT and f = k∆f gives

B[k, l] = Fprx,b(t, f)|t=lT,f=k∆f . (6)

The sampled TF domain symbols are converted back to DD
domain through SFFT operation to obtain b[n,m] as

b[n,m] =
1√
MN

N−1∑
l=0

M−1∑
k=0

B[k, l]e−j2π(nk
N −ml

M ). (7)

The effective input-output relation in DD domain can be
written combining (1)-(7) as [3]

b[n,m] =

L−1∑
i=0

g′ia[(n− βi)N , (m− αi)M ] + w[n,m], (8)

where g′i = gie
−j2πτiνi , αi is the integer corresponding to the

index of delay tap and βi is the integer corresponding to the
Doppler frequency associated with τi and νi, respectively, i.e,
τi = αi

M∆f and νi = βi

NT . Vectorizing (8), the input-output
relation can be compactly written as

b = Ga+w, (9)

where b,a,w ∈ CM×N and G ∈ CMN×MN and the (nM +
m)th entry of a, anM+m = a[n,m] for n = 0, · · · , N −
1,m = 0, · · ·M − 1 and a[n,m] ∈ A. Likewise, bnM+m =
b[n,m] and wnM+m = w[n,m] for n = 0, · · · , N − 1,m =
0, · · ·M − 1. gis are assumed to be i.i.d. and are distributed
as CN (0, 1/σ2

pi
), with

∑
i σ

2
pi

= 1.



Fig. 3: Proposed RNN based IPNet channel estimation scheme.

A. Pilot placement schemes

To obtain an estimate of the DD domain channel matrix
G, pilot symbols are placed in the DD grid and transmitted.
These pilot symbols leak into the neighboring DD bins due
to delay and Doppler spreads of the channel. At the receiver,
the symbols corresponding to the transmitted pilots are used
to obtain an estimate of the DD channel. The number of pilot
symbols and how they are placed in an OTFS frame influence
performance and spectral efficiency. Figure 2 shows two types
of pilot placement schemes, namely, interleaved pilot scheme
(Fig. 2a) and embedded pilot scheme (Fig. 2b), which are
described below.

1) Embedded pilot scheme (Fig. 2b): The embedded pilot
scheme is widely used in the OTFS literature [7],[8]. In this
scheme, each frame consists of a pilot symbol (marked in red),
guard symbols (marked in yellow), and data symbols (marked
in blue), which can be represented as

a =


0, if n = ng,m = mg

ap, if n = np,m = mp

ad, elsewhere,
(10)

for n = 0, · · · , N − 1 and m = 0, · · ·M − 1. In (10), ngs and
mgs denote the indices of guard bands around the pilot symbol
ap, and the remaining indices are occupied by data symbols
ad ∈ A. The pilot symbol is surrounded by guard symbols
to alleviate interference from data symbols. The number of
guard symbols are adjusted to accommodate the maximum
delay spread τmax and maximum Doppler spread νmax. While
interference between pilot and data symbols are avoided in
this scheme, spectral efficiency is compromised because of
the presence of guard bins.

2) Interleaved pilot scheme (Fig. 2a) [11]: In this scheme,
pilot symbols (marked in red) are placed across each frame in
a lattice-type arrangement. The pilots are surrounded by data
symbols (marked in blue) without any guard bins in between.
The pilots are separated in the delay domain by Sτ bins and
in Doppler domain by Sν bins, which are chosen based on the
number of pilots, Np, in a frame, with the constraint Sτ > mτ

and Sν > nν , where mτ and nν are the delay and Doppler taps
corresponding τmax and νmax, respectively. We will consider
this interleaved pilot placement scheme, which has not been
considered for OTFS before. While guard bins are avoided
in this scheme, the receive signal processing must be capable
of handling the effect of the leakage between pilot and data
symbols. We propose an RNN based network for this very
purpose in the next section.

III. IPNET – PROPOSED RNN BASED DD CHANNEL
ESTIMATOR

In this section, we present the proposed IPNet, an RNN
based network for DD channel estimation, its architecture
and training methodology. The block diagram of the proposed
IPNet is presented in Fig. 3. Information symbols a[n,m]s are
converted to time domain signal a(t) at the OTFS transmitter
and transmitted through a time-varying fading channel. At the
OTFS receiver, the received signal, b(t), is converted back to
DD domain to obtain symbols b[n,m], n = 0, · · · , N − 1,
m = 0, · · · ,M − 1, given by (8). The received DD frame
is passed on to the IPNet block. At the IPNet block, the
following set of operations are carried out to obtain the first
set of channel estimates.

Let npi
and mpi

denote the Doppler and delay indices for
the ith pilot symbol, respectively (see Fig. 2a), where i =
1, · · · , Np. Due to the channel, the pilot symbol spreads into
the nearby DD bins. For the ith pilot, the spread is contained
within the indices npi

− nν to npi
+ nν on the Doppler axis

and mpi
to mpi

+ mτ on the delay axis. From the received
OTFS frame, the symbols in these locations are extracted and
vectorized to obtain the vector b′

i ∈ C(2nν+1)(mτ+1)×1 for the
ith pilot. This is repeated for each pilot to obtain the vector
b′ ∈ CNp(2nν+1)(mτ+1)×1, given by

b′ = [b′
1,b

′
2, · · · ,b′

Np
]. (11)

Note that the vector b′ contains the effect of both pilot and data
symbols. The input to the IPNet is the vector b′. The output
of the IPNet is a vector ĝ ∈ C(2nν+1)(mτ+1)×1 of channel
estimates. Among the (2nν+1)(mτ +1) entries in this vector,
only those channel estimates are picked as valid paths for
which the absolute value is greater than 4% of the maximum
absolute value in the vector, i.e., if ĝmax = maxi |ĝi|, then

ĝi =

{
0, if |ĝi| ≤ 0.04ĝmax

ĝi, otherwise.
(12)

This operation is carried out because the absolute value of
the output of the IPNet for an invalid path is close to zero
but not exactly zero. The locations of the valid paths are
then used to obtain the estimates for integers corresponding to
delay taps (α̂is) and Doppler frequencies (β̂is) (see (8)) in the
DD grid. Using the estimates ĝ, α̂, and β̂, the estimated DD
domain channel matrix Ĝ is obtained. This matrix is used for
detection of data symbols. To further improve the accuracy of
the channel estimates, the output of the detector, a′[n,m], is
fed back to the IPNet block for cancelling the effect of data
symbols. A new DD frame is constructed as

b′′ = b− Ĝa′, (13)



Fig. 4: Proposed RNN based IPNet architecture.

Parameter Value
Number of LSTM layers (P ) 3
LSTM hidden size (h) 50
LSTM input dimensions (c, s, 2)
LSTM output dimensions (c, s, 50)
FCNN input neurons 50
FCNN output neurons 2(2nν + 1)(mτ + 1)

TABLE I: Parameters of the IPNet architecture.

where a′ ∈ CNM×1 (b ∈ CNM×1) is the vectorized version
of a′[n,m] (b[n,m]). Vector b′ is computed again using (11)
and b′′ as the received frame. This is provided as input to
the IPNet and another set of refined channel estimates are
obtained. This iterative procedure is repeated P times and the
output of the detector at the end of P th iteration, â[n,m], is
used to compute the bit error performance.

A. Architecture
The architecture of the proposed IPNet block is shown in

Fig. 4. The architecture consists of P layers of long short-term
memory (LSTM) [13],[14], a variant of RNN. The output of
the LSTM layers is passed through a ReLU activation function,
given by ReLU(x) = max (0, x) , ∀x ∈ (−∞,∞). The output
of the LSTM layers is passed through a fully connected neural
network (FCNN) with one layer. The FCNN is employed to
reduce the dimension of the output of the LSTM network to
the required dimension. Since the output of the FCNN layer
needs to be the channel estimate, a linear activation function,
with range between (−∞,∞), is used at the output of the
FCNN. Valid paths are picked from the resulting vector at the
output of the FCNN layer using (12). The resulting vector ĝ
is then returned as the channel coefficient vector. The other
parameters of the IPNet architecture are presented in Table I.
The variable c refers to the batch size and s = Np(2nν +
1)(mτ + 1) is the sequence length. The output of the FCNN
is a vector of dimension 2(2nν + 1)(mτ + 1), where the the
first (2nν +1)(mτ +1) dimensions are treated as real and the
remaining as imaginary part of the channel estimates.

B. Training methodology

Training data is obtained by generating multiple OTFS
frames with varying Np (number of interleaved pilots). These
frames are converted to time domain and transmitted through a
time-varying fading channel. The received signal is converted
back to DD domain. Np(2nν + 1)(mτ + 1) symbols corre-
sponding to the Np transmitted pilots are extracted from the
received frame as per (11) to obtain the vector b′. The real and
imaginary parts of b′ are concatenated before being provided
as input to IPNet. For training the IPNet, the ground truth data
is obtained by generating a (2nν + 1)(mτ + 1) length true
channel estimate vector, g. This vector is constructed such

Parameter Value
Epochs 20000
Optimizer Adam
Learning rate 0.001, divide by 2 every 4000 epochs
Batch size 1000
Mini-batch size 64
Refresh training data Every epoch

TABLE II: Hyper-parameters used for training the IPNet.

that the entries are channel estimates only where there are
valid paths and zeros elsewhere. During training, the weights
of IPNet are updated such that the L1 loss between the output
of IPNet, ĝ, and g is minimized. The L1 loss function is

L(g, ĝ) =
1

N

N∑
i=1

|g − ĝ|, (14)

where N is the number of samples in the training set. The other
hyper-parameters used while training the IPNet are presented
in Table II. Note that this training needs to be carried out
offline, only once. Subsequently, the network weights are
frozen. New channel estimates are obtained from pilots in each
OTFS frame using the same trained network. Further, as will
be shown in Sec. IV, the trained network is able to work well
for various Np values, owing to the construction of training
data.

C. Estimation of delay and Doppler indices
Once the IPNet is trained, the weights are frozen. During

the inference (testing) phase, channel estimates, ĝ, in the
DD domain are obtained after picking the valid paths ((12)).
To obtain the estimates of α and β, denoted by α̂ and β̂,
respectively, the following steps are followed. The channel
estimate vector ĝ ∈ C(2nν+1)(mτ+1)×1 is reshaped into a
matrix Ĥ ∈ C(2nν+1)×(mτ+1). Index sets, I and J are defined
to store the row and column indices of the non-zero elements
in Ĥ, respectively. That is, I = {i : Ĥ[i, j] ̸= 0, i =
0, · · · , 2nν , j = 0, · · · ,mτ} and J = {j : Ĥ[i, j] ̸= 0, i =
0, · · · , 2nν , j = 0, · · · ,mτ}. Then, for the pth path index, the
estimate of delay and Doppler indices are obtained as

α̂p = Jp, (15)

β̂p = Ip − nν . (16)

We have carried out the simulations using PyTorch machine
learning library [15],[16] on RTX 3090 GPU platform.

Remark on complexity: For the IPNet, the number of
parameters to be learnt for P layers can be computed as
NP = 4h2(2P − 1) + 4hid + 8Ph + 100 × 2(2nν +
1)(mτ + 1) + 2(2nν + 1)(mτ + 1), where h is the hidden
size (see Table I), id = 2 is the input dimension, and
100×2(2nν+1)(mτ +1)+2(2nν+1)(mτ +1) is the number
of parameters in the FCNN layer. For P = 3, nν = 1,mτ = 2,
and h = 50, NP = 52518. Note that these parameters
need to be learnt only once, offline. During the inference
(testing) stage, only 1018 floating point operations (FLOPs)
are required to compute the channel estimate. In contrast, the
approach in [7] does not involve an offline training phase.
Further, the number of FLOPs required is 5(2nν+1)(mτ +1).



Fig. 5: NMSE performance of the proposed IPNet as a function
of pilot SNR for different number of pilots.

IV. RESULTS AND DISCUSSIONS

In this section, we present the mean square error (MSE) and
bit error rate (BER) performance of the proposed IPNet for
DD channel estimation in OTFS. A carrier frequency of fc = 4
GHz and a subcarrier spacing of ∆f = 15 kHz are considered.
We consider the Vehicular A (VehA) channel model [17],[18]
with L = 6 paths and a maximum speed of 220 km/h. This
speed at 4 GHz carrier frequency corresponds to a maximum
Doppler shift, νmax, of 815 Hz. Each path has a Doppler shift
generated using Jakes model νi = νmax cos θi, where θi is
assumed to be uniformly distributed between [−π, π]. We fix
the number of Doppler bins (N ) and delay bins (M ) to be 12
and 64, respectively. A BPSK symbol +1 is used as the pilot
symbol and data symbols are chosen from 4-QAM alphabet.
To train the network, the batch size (c) is chosen to be 1100
of which 1000 OTFS frames are used for training and 100
frames are used for validating the training.

To evaluate the accuracy of the channel estimates provided
by the IPNet, we evaluate the normalized mean square error
(NSME) for the DD domain channel matrix. The value of
NMSE is computed as follows. The estimates of the channel
coefficients, delay taps, and Doppler taps are obtained from
the IPNet as described in Sec. III-C. Using these values, an
estimate for the matrix G (see (9)), denoted by Ĝ, is obtained.
The NMSE is computed as NMSE = E

[
∥G−Ĝ∥2

F

∥G∥2
F

]
. For

evaluating the BER performance, the message passing (MP)
detector in [3] is used. Note that with the proposed approach,
since the valid paths are chosen based on (12), which in turn
depends on the energy of channel estimates, the matrix Ĝ may
have more non-zero entries than the actual channel matrix G.
Therefore, at low pilot SNRs (around 0 dB), where the noise
energy is dominant, the NMSE can take values that are greater
than 1. In all the simulations presented below, the pilot energy
is kept same for all the competing schemes.

A. NMSE performance of IPNet

Figure 5 shows the NMSE performance of the proposed
IPNet as a function of pilot SNR for Np = 8 and 12. The
pilot power is equally distributed among the Np pilots. The
NMSE performance of the embedded pilot scheme in [7]

Fig. 6: BER of the proposed IPNet and the scheme in [7] as
a function of number of pilots, Np.

is also presented for comparison. The NMSE performance
of the IPNet without data cancellation (DC) for both the
Np values is observed to be close to that of the scheme
in [7] with the performance being slightly inferior at SNRs
above 35 dB. However, with 1 iteration of DC (see (13)), the
NMSE performance improves beyond the scheme in [7] in
the mid and high SNR regime. Note that, for the considered
parameters, nν is 1 and mτ is 2. The scheme in [7], therefore,
requires (4nν + 1)(2mτ + 1) = 25 symbols for interference
free estimation of channel coefficients, while a better NMSE
performance is achieved from the proposed scheme using
fewer DD bins (12 and 8 bins for Np =12 and 8, respectively).

B. BER as a function of number of pilots

Figure 7 shows the BER performance of the proposed IPNet
as a function of number of pilots, Np, for a fixed pilot SNR
of 30 dB and a fixed data SNR of 16 dB. The performance of
the scheme in [7], with 1 pilot and 24 guard symbols, is also
presented for comparison. With the increase in the the number
of pilots, the BER performance is observed to improve for
the proposed IPNet. This is because with increase in Np, the
sequence length s at the input of the IPNet also increases
(see Table I). This allows the IPNet to provide estimates
with better accuracy as more information is available at the
input. However, with further increase in the number of pilots
(Np > 16), the BER performance is observed to increase
slightly, owing to decrease in the energy per pilot symbol.
This demonstrates that the proposed IPNet is able to work with
different pilot densities and is able to perform better than the
scheme in [7] when DC is employed.

C. BER vs SNR at different pilot SNRs

Figure 7 shows the BER performance of the proposed IPNet
with 12 pilots for pilot SNRs of 40 dB, 30 dB, and 20 dB.
In all the figures, the performance of the OTFS system with
perfect CSI is presented for comparison. In addition, the BER
performance of the embedded pilot scheme in [7] is also
presented.

1) Pilot SNR = 40 dB: The BER performance of the
proposed scheme with a pilot SNR of 40 dB is presented in
Fig. 7a. It is seen that with no DC, the performance is close



(a) Pilot SNR = 40 dB (b) Pilot SNR = 30 dB (c) Pilot SNR = 20 dB

Fig. 7: BER performance comparison between the proposed IPNet with 12 pilots and the scheme in [7] for different pilot SNR
values.

to that of the perfect CSI case till about 12 dB, after which
the performance floors. This flooring is alleviated when DC is
employed. With 1 iteration of DC, the performance improves
closer to the perfect CSI performance, while with 2 iterations
of DC, the performance matches that of the scheme in [7].
The performance is also very close to that of perfect CSI. For
example, for a BER of 10−3, the gap in data SNR is observed
to be less than a dB.

2) Pilot SNR = 30 dB: Figure 7b shows the BER perfor-
mance when the pilot SNR is 30 dB. The BER performance
of the proposed IPNet with and without DC is observed
to be better than that of the scheme in [7]. With DC, the
performance improves with the improvement being larger
when two iterations are used. With two iterations of DC and
the proposed approach, there is significant gain observed over
the scheme in [7]. For example, for a BER of 5 × 10−3 an
SNR advantage of about 5 dB is observed.

3) Pilot SNR = 20 dB: The BER performance for a pilot
SNR of 20 dB is presented in Fig. 7c. It is observed that the
performances of the proposed IPNet and the scheme in [7]
floor. In the low and mid SNR regime, the BER performance
of the proposed IPNet is observed to better, after which the
performance of IPNet without DC is observed to floor. With
1 and 2 iterations of DC, the proposed IPNet is observed
to outperform the scheme in [7]. From the results presented
above, it is seen that the proposed IPNet with interleaved pilots
can achieve similar or better bit error performance compared to
the embedded pilot scheme in [7], while being more spectrally
efficient.

V. CONCLUSIONS

We introduced and investigated interleaved pilot scheme for
DD channel estimation in OTFS systems. This pilot scheme
does not contain guard bins in OTFS frames. To handle the
leakage between the pilot and data symbols and to obtain
good DD channel estimates, we proposed a multi-layer LSTM
based learning network called IPNet. The proposed IPNet
demonstrated good NMSE and BER performance compared
to existing techniques in the literature. This performance
advantage with the proposed IPNet was achieved while using
fewer pilot resources, and therefore being spectrally efficient.
Also, a learning based approach for DD channel estimation

in OTFS with super-imposed pilots is an interesting topic for
future research.
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