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Abstract—Orthogonal time frequency space (OTFS) modula-
tion is a recently introduced multiplexing technique designed in
the 2-dimensional (2D) delay-Doppler domain suited for high-
Doppler fading channels. OTFS converts a doubly-dispersive
channel into an almost non-fading channel in the delay-Doppler
domain through a series of 2D transformations. In this paper,
we focus on MIMO-OTFS which brings in the high spectral
and energy efficiency benefits of MIMO and the robustness
of OTFS in high-Doppler fading channels. The OTFS channel-
symbol coupling and the sparse delay-Doppler channel impulse
response enable efficient MIMO channel estimation in high
Doppler environments. We present an iterative algorithm for sig-
nal detection based on message passing and a channel estimation
scheme in the delay-Doppler domain suited for MIMO-OTFS.
The proposed channel estimation scheme uses impulses in the
delay-Doppler domain as pilots for estimation. We also compare
the performance of MIMO-OTFS with that of MIMO-OFDM
under high Doppler scenarios.

keywords: OTFS modulation, MIMO-OTFS, 2D modulation, delay-

Doppler domain, MIMO-OTFS signal detection, channel estimation.

I. INTRODUCTION

Future wireless systems including 5G systems need to

operate in dynamic channel conditions, where operation in

high mobility scenarios (e.g., high-speed trains) and millimeter

wave (mm Wave) bands are envisioned. The wireless chan-

nels in such scenarios are doubly-dispersive, where multipath

propagation effects cause time dispersion and Doppler shifts

cause frequency dispersion [1]. OFDM systems are usually

employed to mitigate the effect of inter-symbol interference

(ISI) caused by time dispersion [2]. However, Doppler shifts

result in inter-carrier interference (ICI) in OFDM and degrades

performance [3]. An approach to jointly combat ISI and

ICI is to use pulse shaped OFDM systems [4]-[6]. Pulse

shaped OFDM systems use general time-frequency lattices

and optimized pulse shapes in the time-frequency domain.

However, systems that employ the pulse shaping approach do

not efficiently address the need to support high Doppler shifts.

Orthogonal time frequency space (OTFS) modulation is a

recently proposed multiplexing scheme [7]-[10] which meets

the high-Doppler signaling need through a different approach,

namely, multiplexing the modulation symbols in the delay-

Doppler domain (instead of multiplexing symbols in time-

frequency domain as in traditional modulation techniques such

as OFDM). OTFS waveform has been shown to be resilient

to delay-Doppler shifts in the wireless channel. For example,

OTFS has been shown to achieve significantly better error
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performance compared to OFDM for vehicle speeds ranging

from 30 km/h to 500 km/h in 4 GHz band, and that the

robustness to high-Doppler channels (e.g., 500 km/h vehicle

speeds) is especially notable, as OFDM performance breaks

down in such high-Doppler scenarios [9]. When OTFS wave-

form is viewed in the delay-Doppler domain, it corresponds

to a 2D localized pulse. Modulation symbols, such as QAM

symbols, are multiplexed using these pulses as basis functions.

The idea is to transform the time-varying multipath channel

into a 2D time-invariant channel in the delay-Doppler domain.

This results in a simple and symmetric coupling between the

channel and the modulation symbols, due to which significant

performance gains compared to other multiplexing techniques

are achieved [7]. OTFS modulation can be architected over any

multicarrier modulation by adding pre-processing and post-

processing blocks. This is very attractive from an implemen-

tation view-point.

Recognizing the promise of OTFS in future wireless sys-

tems, including mmWave communication systems [10], several

works on OTFS have started emerging in the recent literature

[11]-[17]. These works have addressed the formulation of

input-output relation in vectorized form, equalization and de-

tection, and channel estimation. Multiple-input multiple-output

(MIMO) techniques along with OTFS (MIMO-OTFS) can

achieve increased spectral/energy efficiencies and robustness

in rapidly varying MIMO channels. It is shown in [7] that

OTFS approaches channel capacity through linear scaling of

spectral efficiency with the MIMO order. We, in this paper,

consider the signal detection and channel estimation aspects

in MIMO-OTFS.

Our contributions can be summarized as follows. We first

present a vectorized input-output formulation for the MIMO-

OTFS system. This linear vector channel model enables

MIMO-OTFS signal detection using a variety of detection

algorithms. Initially, we assume perfect channel knowledge

at the receiver and employ an iterative algorithm based on

message passing for signal detection. The algorithm has low

complexity and it achieves very good performance. For ex-

ample, in a 2 × 2 MIMO-OTFS system, a bit error rate

(BER) of 10−5 is achieved at an SNR of about 14 dB for

a Doppler of 1880 Hz (500 km/hr speed at 4 GHz). For the

same system, MIMO-OFDM BER performance floors at a

BER of 0.02. Next, we relax the perfect channel estimation

assumption and present a channel estimation scheme in the

delay-Doppler domain. The proposed scheme uses impulses in

the delay-Doppler domain as pilots for MIMO-OTFS channel

estimation. The proposed scheme is simple and effective in
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Fig. 1. MIMO-OTFS modulation scheme.

high-Doppler MIMO channels. For example, compared to the

case of perfect channel knowledge, the proposed scheme loses

performance only by less than a fraction of a dB.

The rest of the paper is organized as follows. The MIMO-

OTFS system model and the vectorized input-output relation

are developed in Sec. II. MIMO-OTFS signal detection using

message passing and the resulting BER performance are pre-

sented in Sec. III. The channel estimation scheme in the delay-

Doppler domain and the achieved performance are presented

in Sec. IV. The conclusions are presented in Sec. V.

II. MIMO-OTFS MODULATION

Consider a MIMO-OTFS system as shown in Fig. 1 with

equal number of transmit (nt) and receive antennas (nr),

i.e., nt = nr = na. The treatment can be extended to

the case of nr ≥ nt. Please refer [12],[13] for the system

model of a SISO-OTFS system and the development of a

vectorized formulation of the input-output relation in SISO-

OTFS. Each antenna in the MIMO-OTFS system transmits

OTFS modulated information symbols independently. Let the

windows Wtx[n,m], Wrx[n,m] used for modulation be rect-

angular. Assume that the channel corresponding to pth transmit

antenna and qth receive antenna has P taps. So the channel

representation can be written as

hqp(τ, ν) =

P∑

i=1

hqpi
δ(τ − τi)δ(ν − νi), (1)

where τi, νi, and hqpi
denote the delay, Doppler, and fade

coefficient of the ith path, respectively, and p = 1, 2, · · · , na,

q = 1, 2, · · · , na. We can use the vectorized formulation in

[12],[13] for each transmit and receive antenna pair to describe

the input-output relation.

A. Vectorized formulation of the input-output relation for

MIMO-OTFS

Let Hqp denote the equivalent channel matrix corresponding

to pth transmit antenna and qth receive antenna. Let xp denote

the NM×1 transmit vector from the pth transmit antenna and

yq denote the NM × 1 received vector corresponding to qth

receive antenna in a given frame. Similar to the system model

in [12],[13] for a SISO-OTFS system, we can derive a linear

system model describing the input and output for the MIMO-

OTFS system as given below

y1 = H11x1 +H12x2 + · · ·+H1na
xna

+ v1,

y2 = H21x1 +H22x2 + · · ·+H2na
xna

+ v2,

...

yna
= Hna1x1 +Hna2x2 + · · ·+Hnana

xna
+ vna

. (2)

Define

HMIMO =








H11 H12 . . . H1na

H21 H22 . . . H2na

...
...

. . .
...

Hna1 Hna2 . . . Hnana







,

xMIMO = [x1
T
,x2

T
, · · · ,xna

T ]
T
,yMIMO = [y1

T
,y2

T
, · · · ,yna

T ]
T
,

vMIMO = [v1
T
,v2

T
, · · · ,vna

T ]
T
.

Then, (2) can be written as

yMIMO = HMIMOxMIMO + vMIMO, (3)

where xMIMO,yMIMO,vMIMO ∈ C
naNM×1, HMIMO ∈

C
naNM×naNM . Thus, in this representation, each row

and column of HMIMO has only naP non-zero elements due to

modulo operations.

III. MIMO-OTFS SIGNAL DETECTION

In this section, we present a MIMO-OTFS signal detection

scheme using an iterative algorithm based on message passing

and present a performance comparison between MIMO-OTFS

and MIMO-OFDM in high-Doppler scenarios.

A. Algorithm for MIMO-OTFS signal detection

Let the sets of non-zero positions in the bth row and ath

column of HMIMO be denoted by ζb and ζa, respectively. Using

(3), the system can be modeled as a sparsely connected factor

graph with naNM variable nodes corresponding to the ele-

ments in xMIMO and naNM observation nodes corresponding to

the elements in yMIMO. Each observation node yb is connected to

the set of variable nodes {xc, c ∈ ζb}, and each variable node

xa is connected to the set of observation nodes {yc, c ∈ ζa}.

Also, |ζb| = |ζa| = naP . The maximum a posteriori (MAP)

decision rule for (3) is given by

x̂MIMO = argmax
xMIMO∈AnaNM

Pr(xMIMO|yMIMO,HMIMO), (4)



where A is the modulation alphabet (e.g., QAM) used. The

detection as per (4) has exponential complexity. Hence, we

use symbol by symbol MAP rule for 0 ≤ a ≤ naNM − 1 for

detection as follows:

x̂a = argmax
aj∈A

Pr(xa = aj |yMIMO,HMIMO)

= argmax
aj∈A

1

|A|
Pr(yMIMO|xa = aj ,HMIMO)

≈ argmax
aj∈A

∏

c∈ζa

Pr(yc|xa = aj ,HMIMO).

The transmitted symbols are assumed to be equally likely and

the components of yMIMO are nearly independent for a given

xa due to the sparsity in HMIMO. This can be solved using

the message passing based algorithm described below. The

message that is passed from the variable node xa, for each

a = {0, 1, · · · , naNM − 1}, to the observation node yb for

b ∈ ζa, is the pmf denoted by pab = {pab(aj)|aj ∈ A} of the

symbols in the constellation A. Let Hab denote the element

in the ath row and bth column of HMIMO. The message passing

algorithm is described as follows.

1: Inputs: yMIMO, HMIMO, Niter: max. number of iterations.

2: Initialization: Iteration index t = 0, pmf p
(0)
ab =

1/|A| ∀ a ∈ {0, 1, · · · , naNM − 1} and b ∈ ζa.

3: Messages from yb to xa: The mean (µ
(t)
ba ) and vari-

ance ((σ
(t)
ba )

2) of the interference term Iba are passed as

messages from yb to xa. Iba can be approximated as a

Gaussian random variable and is given by

Iba =
∑

c∈ζb,c6=a

xcHb,c + vb. (5)

The mean and variance of Iba are given by

µ
(t)
ba = E[Iba] =

∑

c∈ζb,c6=a

|A|
∑

j=1

p
(t)
cb (aj)ajHb,c,

(σ
(t)
ba )

2 = Var[Iba]

=
∑

c∈ζb
c6=a

(

|A|
∑

j=1

p
(t)
cb (aj)|aj |

2|Hb,c|
2 −

∣

∣

∣

∣

|A|
∑

j=1

p
(t)
cb (aj)ajHb,c

∣

∣

∣

∣

2
)

+ σ2.

4: Messages from xa to yb: Messages passed from variable

nodes xa to observation nodes yb is the pmf vector p
(t+1)
ab

with the elements given by

p
(t+1)
ab = ∆ p

(t)
ab (aj) + (1−∆) p

(t−1)
ab (aj), (6)

where ∆ ∈ (0, 1] is the damping factor for improving

convergence rate, and

p
(t)
ab ∝

∏

c∈ζa,c 6=b

Pr(yc|xa = aj ,HMIMO), (7)

where

Pr(yc|xa = aj ,HMIMO) ∝ exp

(

−|yc − µ
(t)
ca −Hc,aaj |

2

σ
2(t)
c,a

)

.

5: Stopping criterion: Repeat steps 3 & 4 till

max
a,b,aj

|p
(t+1)
ab (aj) − p

(t)
ab (aj)| < ǫ (where ǫ is a small

value) or the maximum number of iterations, Niter, is

reached.

6: Output: Output the detected symbol as

x̂a = argmax
aj∈A

pa(aj), a ∈ 0, 1, 2, · · · , naNM − 1, (8)

where

pa(aj) =
∏

c∈ζa

Pr(yc|xa = aj ,HMIMO). (9)

B. Vectorized formulation of the input-output relation for

MIMO-OFDM

In this subsection, in order to provide a performance com-

parison between MIMO-OTFS and MIMO-OFDM, we present

the vectorized formulation of the input-output relation for

MIMO-OFDM. OFDM uses the TF domain for signaling and

channel representation. We will first derive the vectorized

formulation for a SISO-OFDM and extend it to MIMO-

OFDM. For a fair comparison with the OTFS modulation, we

will consider N consecutive OFDM blocks (each of size M )

to be one frame, i.e., the transmit vector xOFDM ∈ C
NM×1, and

message passing detection is done jointly over one NM × 1
frame. The time-delay representation h(τ, t) is related to the

delay-Doppler representation h(τ, ν) by a Fourier transform

along the time axis, and is given by

h(τ, t) =

P∑

i=1

hie
j2πνitδ(τ − τi). (10)

Sample the time axis at t = nTs = n
M∆f

. The sampled time-

delay representation h(τ, n) is given by

h(τ, n) =

P∑

i=1

hie
j2πνin

M∆f δ(τ − τi). (11)

Let CP = P − 1 denote the cyclic prefix length used in each

OFDM block and let L = M + CP . The size of one frame

after cyclic prefix insertion to each block will then be NL.

Let TCP = [CT
CP IM ]

T
denote the L×M matrix that inserts

cyclic prefix for one block, where CCP contains the last CP
rows of the identity matrix IM . Also, let RCP = [0M×CP IM ]
denote the M × L the matrix that removes the cyclic prefix

for one block [19]. Let WM×M and WH
M×M denote the DFT

and IDFT matrices of size M . We use the following notations.

• Bcpin = diag (TCP ,TCP , · · · ,TCP )
︸ ︷︷ ︸

N times

: cyclic prefix

insertion matrix for N consecutive OFDM blocks.

• Bcpre = diag (RCP ,RCP , · · · ,RCP )
︸ ︷︷ ︸

N times

: cyclic prefix

removal matrix for N consecutive OFDM blocks.

• D = diag (W,W, · · · ,W)
︸ ︷︷ ︸

N times

: DFT matrix for N consec-

utive OFDM blocks.



• DH = diag (WH ,WH , · · · ,WH)
︸ ︷︷ ︸

N times

: IDFT matrix for N

consecutive OFDM blocks.

• The channel in the time-delay domain for a given frame

can be written as a matrix Htd using (11) and has size

NL×NL .

Using the above, the end-to-end relationship in OFDM mod-

ulation can be described by the following linear model:

yOFDM = DBcpreHtdBcpinD
H

︸ ︷︷ ︸

HOFDM

xOFDM + v

= HOFDMxOFDM + v, (12)

where xOFDM,yOFDM,v ∈ C
NM×1, HOFDM ∈ C

NM×NM .

1) MIMO-OFDM: The vectorized formulation of the input-

output relation for SISO-OFDM derived above can be ex-

tended to MIMO-OFDM in a similar fashion as was done for

the MIMO-OTFS system described in Sec. II-A . Let HOFDMqp

denote the equivalent channel matrix corresponding to pth

transmit antenna and qth receive antenna. Let xOFDMp
denote

the NM×1 transmit vector from the pth transmit antenna and

yOFDMq
denote the NM × 1 received vector corresponding to

qth receive antenna in a given frame. Define

HMIMO-OFDM =








HOFDM11
HOFDM12

. . . HOFDM1na

HOFDM21
HOFDM22

. . . HOFDM2na

...
...

. . .
...

HOFDMna1
HOFDMna2

. . . HOFDMnana







,

xMIMO-OFDM = [xOFDM1

T
,xOFDM2

T
, · · · ,xOFDMna

T ]
T
,

yMIMO-OFDM = [yOFDM1

T
,yOFDM2

T
, · · · ,yOFDMna

T ]
T
.

The input-output relation for MIMO-OFDM can be written as

yMIMO-OFDM = HMIMO-OFDMxMIMO-OFDM + vMIMO-OFDM, (13)

where xMIMO-OFDM,yMIMO-OFDM,vMIMO-OFDM ∈ C
naNM×1,

HMIMO-OFDM ∈ C
naNM×naNM .

C. Performance results and discussions

In this subsection, we present the BER performance of

MIMO-OTFS and compare it with that of MIMO-OFDM.

Perfect channel knowledge is assumed at the receiver. Message

passing algorithm is used for both MIMO-OTFS and MIMO-

OFDM. A damping factor of 0.5 is used. The maximum

number of iterations and the ǫ value used are 30 and 0.01,

respectively. We use the channel model in (1) and the number

of taps P is taken to be 5. The delay-Doppler profile consid-

ered in the simulation is shown in Table I. Other simulation

parameters used are given in Table II.

Path index (i) 1 2 3 4 5
Delay (τi), µs 2.08 4.164 6.246 8.328 10.41

Doppler (νi), Hz 0 470 940 1410 1880

TABLE I
DELAY-DOPPLER PROFILE FOR THE CHANNEL MODEL WITH P = 5.

Figure 2 shows the BER performance of MIMO-OTFS for

SISO as well as 2 × 2 and 3 × 3 MIMO configurations.

Parameter Value

Carrier frequency (GHz) 4

Subcarrier spacing (kHz) 15

Frame size (M,N) (32, 32)
Modulation scheme BPSK

MIMO configuration 1×1, 2×2, 3×3

Maximum speed (kmph) 507.6

TABLE II
SYSTEM PARAMETERS.
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Fig. 2. BER performance of MIMO-OTFS for SISO, and 2 × 2 and 3 × 3
MIMO systems.

The maximum considered speed of 507.6 kmph corresponds

to 1880 Hz Doppler frequency at a carrier frequency of 4

GHz. Even at this high-Doppler value, MIMO-OTFS is found

to achieve very good BER performance. We observe that,

a BER of 10−5 is achieved at an SNR of about 14 dB

for the 2×2 system, while the SNR required to achieve the

same BER reduces by about 2 dB for the 3×3 system. Thus,

with the proposed detection algorithm, MIMO-OTFS brings

in the advantages of linear increase in spectral efficiency with

number of transmit antennas and the robustness of OTFS

modulation in high-Doppler scenarios.
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Fig. 3. BER performance comparison between MIMO-OTFS and MIMO-
OFDM in a 2× 2 MIMO system.

Figure 3 shows the BER performance comparison between

MIMO-OTFS and MIMO-OFDM in a 2×2 MIMO system.

The maximum Doppler spread in the considered system is

high (1880 Hz) which causes severe ICI in the TF domain.

Because of the severe ICI, the performance of MIMO-OFDM

is found to break down and floor at a BER value of about



Fig. 4. Illustration of pilots and channel response in delay-Doppler domain in a 2×1 MIMO-OTFS system.

2 × 10−2. However, MIMO-OTFS is able to achieve a BER

of 10−5 at an SNR value of about 14 dB. This is because

OTFS uses the delay-Doppler domain for signaling instead of

TF domain. Thus, the BER plots clearly illustrate the robust

performance of MIMO-OTFS and its superiority over MIMO-

OFDM under rapidly varying channel conditions.

IV. CHANNEL ESTIMATION FOR MIMO-OTFS

In this section, we relax the assumption of perfect channel

knowledge and present a channel estimation scheme in the

delay-Doppler domain. The scheme uses impulses in the delay-

Doppler domain as pilots. Figure 4 gives an illustration of the

pilots, channel response, and received signal in a 2×1 MIMO

system with the delay-Doppler profile and system parameters

given in Tables I and II. Each transmit and receive antenna

pair sees a different channel having a finite support in the

delay-Doppler domain. The support is determined by the delay

and Doppler spread of the channel [8]. This fact can be used

to estimate the channel for all the transmit-receive antenna

pairs simultaneously using a single MIMO-OTFS frame as

described below.

The OTFS input-output relation for pth transmit antenna and

qth receive antenna pair can be written as

x̂q[k, l] =

M−1
∑

m=0

N−1
∑

n=0

xp[n,m]
1

MN
hwqp

(

k − n

NT
,
l −m

M∆f

)

+vq[k, l].

(14)

If we transmit

xp[n,m] = 1 if (n,m) = (np,mp)

= 0 ∀ (n,m) 6= (np,mp), (15)

as pilot from the pth antenna, the received signal at the qth

antenna will be

x̂q[k, l] =
1

MN
hwqp

(
k − np

NT
,
l −mp

M∆f

)

+ vq[k, l]. (16)

We can estimate 1
MN

hwqp

(
k

NT
, l
M∆f

)

from (16), since,

being the pilots, np and mp are known at the receiver a priori.

From this, we can get the equivalent channel matrix Ĥqp using

the vectorized formulation. From (16) we also see that, due

to the 2D-convolution input-output relation, the impulse at

(n,m) = (np,mp) is spread by the channel only to the extent

of the support of the channel in the delay-Doppler domain.

Thus, if we send the pilot impulses from the transmit antennas

with sufficient spacing in the delay-Doppler domain, they will

be received without overlap. Hence, we can estimate the chan-

nel responses corresponding to all the transmit-receive antenna

pairs simultaneously and get the estimate of the equivalent

MIMO-OTFS channel matrix ĤMIMO using a single MIMO-

OTFS frame. This is illustrated in Fig. 4 for a 2 ×1 MIMO-

OTFS system with frame size (M,N) = (32, 32) at an SNR

value of 4 dB. The first antenna transmits the pilot impulse at

(n1,m1) = (0, 0) and the second antenna transmits the pilot

impulse at (n2,m2) = (16, 16) in the delay-Doppler domain.

We observe that the impulse response hw11

(
k−n1

NT
, l−m1

M∆f

)

and hw12

(
k−n2

NT
, l−m2

M∆f

)

are non-overlapping at the receiver.

Thus they can be estimated simultaneously using a single pilot

MIMO-OTFS frame.

A. Performance results and discussions

In this subsection, we present the BER performance of the

MIMO-OTFS system using the estimated channel. We use the

MIMO-OTFS channel estimation scheme described above, for

estimating the equivalent channel matrix ĤMIMO and use the

message passing algorithm for detection. The delay-Doppler

profile and the simulation parameters are as given in Table I

and Table II, respectively.

In Fig. 5, we plot the Frobenius norm of the difference

between the equivalent channel matrix (HMIMO) and the es-

timated equivalent channel matrix (ĤMIMO) (a measure of

estimation error) as a function of pilot SNR for a 2×2

MIMO-OTFS system with system parameters as in Tables

I and II. We observe that, as expected, the Frobenius norm

of the difference matrix decreases with pilot SNR. Figure 6

shows the corresponding BER performance using the proposed
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Fig. 5. Frobenius norm of the difference between the equivalent channel

matrix (HMIMO) and the estimated equivalent channel matrix (ĤMIMO) as a
function of pilot SNR in a 2×2 MIMO-OTFS system.
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Fig. 6. BER performance of MIMO-OTFS system using the estimated channel
in a 2×2 MIMO-OTFS system.

channel estimation scheme for the 2×2 MIMO-OTFS system.

It is observed that the BER performance achieved with the

estimated channel is quite close to the performance with

perfect channel knowledge. For example, a BER of 2× 10−5

is achieved at SNR values of about 12.5 dB and 13 dB with

perfect channel knowledge and estimated channel knowledge,

respectively. At the considered maximum Doppler frequency

of 1880 Hz, channel estimation in the time-frequency domain

leads to inaccurate estimation because of the rapid variations

of the channel in time. On the other hand, the sparse channel

representation in the delay-Doppler domain is time-invariant

over a larger observation time. This, along with the OTFS

channel-symbol coupling (2D periodic convolution) in the

delay-Doppler domain, enables the proposed channel estima-

tion for MIMO-OTFS to be simple and efficient.

V. CONCLUSIONS

We investigated signal detection and channel estimation as-

pects of MIMO-OTFS under high-Doppler channel conditions.

We developed a vectorized formulation of the input-output

relationship for MIMO-OTFS which enables MIMO-OTFS

signal detection using a variety of detection algorithms. We

presented a low complexity iterative algorithm for MIMO-

OTFS detection based on message passing. The algorithm was

shown to achieve very good BER performance even at high

Doppler frequencies (e.g., 1880 Hz) in a 2× 2 MIMO system

where MIMO-OFDM was shown to floor in its BER perfor-

mance. We also presented a channel estimation scheme in

the delay-Doppler domain, where delay-Doppler impulses are

used as pilots. The proposed channel estimation scheme was

shown to be efficient and the BER degradation was small as

compared to the performance with perfect channel knowledge.

The sparse nature of the channel in the delay-Doppler domain

which is time-invariant over a larger observation time enabled

the proposed estimation scheme to be simple and efficient.
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