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Abstract—In this paper, we derive analytical expressions for the
bit error rate (BER) of space-time block codes (STBC) from
complex orthogonal designs (COD) with quadrature amplitude
modulation (QAM) on Rayleigh fading channels. We take a bit
log-likelihood ratio (LLR) based approach to derive the BER
expressions. We first derive the LLRs for the various bits form-
ing the QAM symbol, and use these LLRs to derive analytical
expressions for the error rate of the individual bits forming the
QAM symbol, and hence the average BER of the system. The ap-
proach presented in this paper can be used in the BER analysis
of any STBC from COD with linear processing, for any value of
M ina M-QAM system. Here, we present the BER analysis and
results for a 16-QAM system with 7) (2-Tx, L-Rx) antennas using
Alamouti code (rate-1 STBC), 47) (3-Tx, L-Rx) antennas using a
rate-1/2 STBC, and ii:) (5-Tx, L-Rx) antennas using a rate-7/11
STBC. The LLRs derived can also be used as soft inputs to de-
coders for various coded QAM schemes, including turbo coded
QAM with space-time coding.

Keywords— STBC, complex orthogonal design, QAM, BER analysis, log-
likelihood ratio.

I. INTRODUCTION

The potential capacity gains achieved by using multiple an-
tenna systems has led to considerable attention in the area
of space-time coding [1]. Space-time block codes (STBC)
from complex orthogonal designs (COD) are of interest as
they can be used for complex constellations such as QAM to
achieve higher data rates in wireless communication systems
[2],[3]. Recent works have reported analytical expressions
for the symbol error rate (SER) and the bit error rate (BER)
of orthogonal STBCs. In [4], Shin and Lee derived expres-
sions for the SER of orthogonal STBCs on Rayleigh fading
channels. They derived the SER by converting the multiple
input multiple output (MIMO) system model to an equivalent
single input single output (SISO) model. Recently, Simon in
[5], and Taricco and Biglieri in [6], have reported exact ex-
pressions for the pairwise error probability (PEP) as well as
approximate expressions for the BER for space-time codes.

Our key contribution in this paper is the derivation of analyti-
cal expressions for the BER for linear STBCs from COD with
QAM modulation on Rayleigh fading channels. We adopt a
bit log-likelihood ratio (LLR) based approach, where we first
derive expressions for the LLRs of the individual bits forming
the M-QAM symbol, and then use these LLRs to obtain the
BER expressions. We present the BER analysis for 16-QAM
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systems with ¢) (2-Tx, L-Rx) antennas using the rate-1 Alam-
outi code, i) (3-TX, L-Rx) antennas using a rate-1/2 code,
and 4i7) (5-Tx, L-Rx) antennas using a rate-7/11 code. Al-
though we present the analysis and results only for 16-QAM
in this paper, the approach applies for any value of M and
for any arbitrary mapping of bits to the M/-QAM symbol. In
addition, the LLRs derived can also be used as soft inputs to
decoders for various coded QAM schemes, including turbo
coded QAM with space-time coding.

The rest of the paper is organized as follows. We present the
MIMO system model in Section Il. In Section I11, we derive
the LLRs for the various bits forming a 16-QAM symbol. In
Section IV, we derive the analytical expressions for the BER.
Numerical results and discussions are presented in Section V.
Section VI presents the conclusions.

Il. SYSTEM MODEL

We consider a wireless communication system with L, trans-
mit and L, receive antennas. The channel is assumed to be
a flat, slowly varying (quasi-static), Rayleigh fading channel.
We consider space-time block codes, where each codeword is
a matrix with P rows and L; columns, with complex valued
symbols as its entries. Here, P is the number of time slots
required to transmit one codeword. For some K informa-
tion symbols, sq, s2,- - -, sk, which are selected from the 16-
QAM constellation (see Fig. 1)%, the entries of the codeword
X = {zi,t =1,2,---,P; i = 1,2,---,L;} are a linear
combination of the information symbols sx, k =1,2,---, K
and their complex conjugates. Attimeslot¢, t =1,2,---, P,
the t** row of the codeword X (i.e., z}, z2, - - -, ") is trans-
mitted simultaneously from L; antennas. The symbol trans-
mission rate, R, is defined as the number of information sym-
bols transmitted per time slot, i.e., R = K/P. The received
codeword, Y, can be written as

Y = XH+N, 1)
where Y = {y : t = 1,2,---,P; j = 1,2,---,L,} isa
matrix of size P x L,, whose entry y? is the signal received
at antenna j at time slot ¢t; H = {h;;} is the channel ma-
trix of size Ly x L., whose entry h; ; is the complex channel
gain from the transmit antenna s to the receive antenna j. The

14 pits, (r1, 72,73, 74) are mapped on to a complex symbol sz = sy +
Jjskq- The horizontal/vertical line pieces in Fig. 1 denote that all bits under
these lines take the value 1, and the rest take the value 0.
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Fig. 1. 16-QAM Constellation

random variables |h; ;|

tributed with E(|h; ;|?) = Q; N = {n]} is the noise matrix
of size P x L,., whose entries are i.i.d complex Gaussian noise
with zero mean and variance 2.

Let C(.) be a mapping from a K'-tuple complex message vec-
tors = (s1, 82, - -, k) to the columnwise orthogonal Px L;
codeword X = C(s). Due to the columnwise orthogonality
of the linear orthogonal space-time block codes considered,
the L; x L; matrix C(s)H C(s) is given by

K

C(s)* C(s) = diag {Z(gk L lsel)

k=1

where (.)H denotes the Hermitian operator, and G = {gm,n}
is a matrix of size K x L; whose entries can take non-negative
integer values (for example, for the Alamouti code g,,,, =
1, Vm,n). Assuming perfect knowledge of the channel co-
efficients at the receiver, the combined signal output for the
symbol s, is given by

Sk = Apsp+ (g, (3)
where
L,
Ap = Z [gk.11h1,51° + grolhog|” + - + gr.r b, 1], @)
j=1

and ¢ is a complex Gaussian random variable with zero
mean and variance Ay, 0.

I11. BIT LOG-LIKELIHOOD RATIOS
We define the LLR for the bitr;, i = 1,2, 3,4 of symbol s,

k=1,2,---,K,as

LLR,, (r)) =
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Assuming that all the symbols are equally likely and that
the fading is independent of the transmitted symbols, using
Bayes’ rule, we have

Eaesgl) f§k|H,Sk (§k|H, Sk = a)

LLR,, (r;) = log ~
e Y pes© fonts, (3:/H, s = B)

- ()

Since fék\H,Sk (§k|H,$k = a) = ﬁg‘ P _2'||Sk — Ag OLH
where &2

= A 02, (6) can be written as

3 estm @P(E 5k - mall”) ™

LLR;, (r;) =log
‘ (Zﬁesw exp( 25115 — AwBI?)

Using the approximation, log(3_, exp(—X;)) &~ — min; (X;),
we can approximate LLR,, (r;) as?

2

2
LLRSk(’I’i) = %{ min ||§; — A B|| — min |[[§x — Ar } (8)
k" Lges(© aes!
Define k complex variables, 25, k =1,2,---, K, as
N
2= —. 9
P A ©)

Using (9) in (8) and normalizing by 4/5}%, LLR,, (r;) is
written as

A
LLRy(ri) = = { min 2, — BII* - min 2, — a|2} )

BES; aESi

Note that the set partitions Si(l) and Sfo) are delimited by hor-
izontal or vertical boundaries. As a consequence, two sym-
bols in different sets closest to the received symbol always lie
either on the same row (if the delimiting boundaries are ver-
tical) or on the same column (if the delimiting boundaries are
horizontal). Using the above fact, the log-likelihood ratios for
each of the bits forming the symbol, sy, are given as

—Ay, Zrd |Zkr| < 2d
LLRS,c (Tl) = 24y, d(d — 2191) Zpr > 2d (11)
—2Apd(d + Zx1)  Zkr < —2d,
—Ag ﬁde |2kQ| <2d
LLR, (ry) ={ 2Apd(d— o) iro>2d  (12)
—2A, d(d + f:kQ) Zrg < —2d,
LLRS,C (7‘3) = Ak d{|2k1| - 2d}, (13)
LLRS,c (7’4) = Ak d{|2kQ| - Qd}. (14)

In the above equations, 2 and 2 are the real and imagi-
nary parts of 2, respectively, and 2d is the minimum distance
between pairs of signal points.

2This is quite a standard approximation [9], and, as we will see in Sec. V,

the analytical BER evaluated using this approximate LLR is almost the same
as the BER evaluated through simulations without this approximation.



IV. DERIVATION OF BER

In this section, we derive the probability of error for the bit
ri, i = 1,2, 3,4, forming a 16-QAM symbol. The probability
of error for bit 1 in symbol sy, Pbkl, can be written as

k _ pk — k —
Pbl = Pb1|3k1=7d'Pr{skI = _d}+Pb1\sk1=73d'Pr{Sk1 = —3d}
+ P, =a Prskr = d} + Pfy . —aq-Prisks = 3d}, (15)

where sy represents the real part of s;. Let us first consider

Pb’“lls“:_d, which is given by

Pbkilskafd = Pk (16)

bl‘ska—d,H’

where the overline indicates averaging over the complex ran-

dom variables {h;;}. Py ;. 4 Can be written as

Plijean = Pr(LLRy(n) <0|s =—d H)
_ o (G
= Pr(§r24)
d(vA
(1))

where o7 = 02 /2. Let us define

| b K
&= P ZZ Gki- (18)

i=1 k=1

We then have £ = ‘/5?\71?}4?6’ where E, is the energy per
bit per transmit antenna and R is the rate of the STBC used.

From the above, we can write

4E, RA
Pbkl\skzz—d,H = Q (\/ 5Nb7L§k) . (19)

To obtain Pb’“”s“:_d, we need to uncondition Pbkl|sk1:—d,H
w.r.t Ag, which is given by

L

> (gk,llhl,j|2 +0k2lho|” + 0+ gk 1, \th,j|2)
j=1

Ly Ly
9k,1 <Z |h1,j|2> + -+ gk, L, <Z |th,j2> - (20)
j=1 j=1

Ag

Let us define 6,, = Zf;l |hn,j|%n = 1,2,---, L. Since
|h;,j|% are i.i.d exponential with mean €2, the random vari-
ables 8,, are i.i.d Gamma random variables with density func-
tion

fo.(@) = Wexp(—%) sl @)

and the moment generating function® (MGF) is given by

3The moment generating function, My, (s) is defined as My, (s) =
Elexp(—s6x)]

L,
Mo, (s) = <1+%) . (22)

Since Ag = Y51 gk nbn, its MGF, Ma,, is given by

L: 1 L,
Ma, = H <m> . (23)

n=1

Using the above and Craig’s formula [10], we can show that

k 4E, R Ay
Pitlows=-a = Q<\/ SNoLE
L . o Ly
1 [2 sin“¢
= - | d6.(8
g ~/¢=0 nl;[l (Sm2¢+:ulgk,n> ¢
where p1 = Z2E and 4, = GF. Note that the expres-

Ly
S L, sin®s :
sion = [> o [Tty (W) d¢ in the above can be
evaluated numerically and accurately using Gauss-Chebyshev
Quadrature rule. Similarly, the conditional error probability
& o
Py sp1=—3a,1 1S given by

PI'(LLRSIc (7‘1) <0 | Sk = —3d, H)

Pr(i“—i 23d)

36E, RAg
oyl @)

3q.1 W-It Ay, it can be shown that

k
Pyi|s,1——3d,H

Unconditioning P},

l‘skIZ—

k 36FE, R A
Pyiop=—a = Q(”W

Ly

P Ly
1 /(2 sin¢
bis /¢_0 E (sin%ﬁ + M2gk,n) 49, (26)

1

where 2 = %. It can further be shown that Pbkl|a1:—d =
k k - pk

P ja,=qa @nd By, 54 = By, 34 Moreover, for the 16-

QAM constellation considered, it can be shown that Pt =

Pk and Pf, = PF,. With the above, the BER expressions for

the bits rq, 7o, r3, r4 of the symbol s; can be written as
1
k _pk _ *(pk k
Py =P, = 2(P1 +P2)
k _ pk _ 1 k k _ pk
Py =P = 5 2P + Py — P7 ), (27)

where Pf, j = 1,2,3, are given by
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Fig. 2. Comparison of the analytical BER evaluated using approximate
LLRs vs the simulated BER using the LLRs without approximation. 16-
QAM with rate-1 STBC (Alamouti code). 2Tx/2Rx and 2Tx/1Rx antennas.

1 3 L sin’¢ b
PF = = / ——————— | do¢, (28)
! T Jo=o ,Ll;[l <5|n2¢ + Mjgk,n>
and
Q’YbR 18’71,R 10’)’(,R
M1 5Lr§’ 5Lr§ y M3 Lr§ ( )

Again, note that (28) can be evaluated numerically and ac-
curately using the Gauss-Chebyshev Quadrature rule. The
average BER for symbol sy, k = 1,2,---, K, PF, is given
by

1
4
Finally, the average BER of the system, P, is given by

P} (Pi+PL+PL+PE). (30)

1 K
_ k
P, = — ;—1: Pk (31)

V. RESULTS AND DISCUSSION

We computed the BER performance of 16-QAM as a function
of average SNR for the following space time block codes:

S1 S9 S3

—S52 S1 —S54

—83 S4 S1

Ci = S1 S2 Co = —84 —S83 S2
1 — ¥ * ) 2 — * * * )

* * *

—83 81 T84

* * *

—S3 54 81

* * *

—S4 —83 Sy

and

S1 So S3 0 S4

—s5 8} 0 83 85

83 0 —s7  S2 Se

0 83 —s3 —s1 87
sy 0 0 —s; —si
Cs = 0 s} 0 sg  —sh
0 0 sy 85—

0 —s&f —s; O 51

st 0 87 0 82

—-sg —sy 0 0 53

S7  —S¢ —S5 S4 0

C; is the well known Alamouti code with parameters P =
K=1L; =2 R =1,and C{{C; is a 2 x 2 diagonal ma-
trix with the (i,4)** diagonal element, D(i,), of the form
ket sl

C, is arate-1/2 STBC with parameters P = 8, K = 4,L; =
3, R = 1/2, and CHC, is a 3 x 3 diagonal matrix with
the (i,4)™" diagonal element, D(i, i), of the form 35 (2 -
lIsll?)-

Csisarate-7/11 STBC with parameters P = 11, K =7, L; =
5 R = 7/11,and CHC5 is a 5 x 5 diagonal matrix with the
(i,4)*" diagonal element, D(i, ), of the form

7
k=1

3

D(5,5) = »_(2llsell*) + Y llsell*. (33)

k=1 k=3

In Fig. 2, we compare the analytical BER evaluated using the
approximate LLRs derived versus the simulated BER using
the LLRs without approximation, for 16-QAM rate-1 STBC
(Alamouti code) for 2Tx/2Rx and 2Tx/1Rx antennas. It is
observed that the analytically computed BER is almost the
same as the simulated BER, indicating that the approximation
to the LLRs results in insignificant difference between the
analytically computed BER and the true BER.

Figures 3, 4, 5 provide the analytical results of the average
BER performance as a function of the average SNR, ~;, for
different STBCs Cy, C5 and Cs, respectively. The number of
receive antennas considered include L = 1,2,4,10. Figure
6 presents the comparative BER performance of the different
STBCs Cq, Co and C3 when the number of receive antennas
L = 2. The performance in AWGN is also shown for compar-
ison. We also point out that the LLRs derived can also be used
as soft inputs to decoders for various coded QAM schemes,
including turbo coded QAM with space-time coding.

V1. CONCLUSIONS

Using a bit LLR based approach, we derived analytical ex-
pressions for the BER of STBCs from complex orthogonal
designs with QAM on Rayleigh fading. We first derived the
LLRs for the various bits forming the QAM symbol, and used
these LLRs to derive analytical expressions for the error rate
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Fig. 3. BER performance of 16-QAM with 2 transmit antennas and L, =
1,2,4,10 receive antennas using rate-1 STBC (Alamouti code).

of the individual bits forming the QAM symbol, and hence
the average BER of the system. Although the analysis was
given only for 16-QAM in this paper, the approach applies
to the BER analysis of M-QAM systems for any value of
M (any arbitrary mapping of bits to QAM symbols) for any
STBC from COD with linear processing. We presented the
analytical BER results for 16-QAM with i) (2-Tx, L-RX) an-
tennas using Alamouti code (rate-1 STBC), i) (3-Tx, L-Rx)
antennas using a rate-1/2 STBC and 4ii) (5-TX, L-Rx) an-
tennas using a rate-7/11 STBC. The LLRs derived can also
be used as soft inputs to decoders for various coded QAM
schemes, including turbo coded QAM with space-time cod-

ing.
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