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Abstract— In this paper, we present an approach for power
allocation to maximize the effective system throughput with
pricing on the downlink in a CDMA system. We present a
pricing policy and obtain the optimum powers for the users
to maximize the effective system throughput incorporting
this pricing policy. We also study the asymptotic behavior of
the system (i.e., when the number of users and the available
bandwidth are large). We show that in such a system, all
users obtain equal SIR at the optimum point irrespective
of their locations and processing gains. We also derive an
expression for the maximum asymptotic spectral efficiency.
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I. INTRODUCTION

The developments in micro-economics [1], have moti-
vated utility function based resource allocation in cellular
CDMA systems [2]-[7]. In [2], Famolari et al considered
a utility function based approach to allocate powers to
the users in a single-cell CDMA system, where they
considered a utility function which is a function of the
transmit power and the signal-to-interference ratio (SIR).
In [4], Song and Mandayam presented a throughput
maximization approach to satisfy SIR constraints in a
time slotted system. An optimal utility function was
derived to maximize the throughput. In [3], Liu et al con-
sidered utility functions based on residual service times
and obtained scheduling policies and rate allocation to
users. Resource allocation incorporating pricing has been
studied in [5]-[7]. In [5], Saraydar et al extended the
formulation in [2] with supermodular game theoretic
models and incorporating pricing. They obtained more
socially optimal solutions compared to [2]. In [6], Mau
et al studied pricing as a trade off mechanism between
user centric and network centric requirements. In [7],
Matbach and Berry discussed differential pricing for
users. It is of interest to study a pricing policy which
results in a simplified solution for the optimum powers.

In this paper, we study power allocation on the downlink
with pricing in a CDMA system. Each user receives data
from the base station at a fixed rate, and powers are

allocated to users to maximize the effective throughput
of the system. We propose a pricing policy to price users
and obtain the optimum powers for the users to maximize
the effective system throughput incorporating this pricing
policy. We then study the asymptotic behavior of the
system with pricing, i.e., the behavior the system with
large number of users and large amount of resources. We
show that in such a system all users obtain equal SIR
at the optimum point irrespective of their locations and
processing gains.

The rest of the paper is organized as follows. In Section
I, we present the optimum power allocation to the
users without and with pricing. Section Il presents the
numerical results. Section IV provides the conclusion.

Il. POWER ALLOCATION

In this section, we study optimal power allocation to
users on the downlink. The t" user in the cell receives
data from the base station at rate r;, which is assigned
apriori by the base station. However, the data can be
received in error due to interference from the other users
in the cell. Therefore, the effective data rate of user i (i.e.,
the rate of “error-free” data transmission) falls below r;.
This decrease in the effective data rate of user ¢ is a
function of the bit error rate (BER) of user ¢, which, in
turn, depends on the SIR seen by user 4. The SIR of the
it* user is a function of the power, P;, at which the base
station transmits to user i. The objective is to allocate
powers to users to maximize the “effective throughput”
of the system, i.e., the sum of the effective data rates of
all users in the system.

Consider a cell with M users, where the channel gain
from the base station to user 4 is h;, and H = [hi]; ;<
is the channel gain vector. The SIR seen by the i user,
I;, is given by
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where Ny is the power spectral density of additive white
Gaussian noise, W is the system bandwidth, G; = W/r;
is the processing gain of user 4, and v € [0,1] is the
orthogonality factor. When v = 1, the users are said to
be perfectly orthogonal to each other, i.e., users do not
interfere with each other. When v = 0, the users cause
maximum interference to each other.

A. Power Allocation without Pricing

In this subsection, we present the power allocation to
users without pricing. Let U; denote the utility of user .
We define U; as the effective throughput of user i, i.e.,

U; =i f(T3), )]

where f(T';) € [0,1] denotes the factor by which the
effective rate of user ¢ is below the actual rate »; due
to interference from the other users. The function f(T;),
for example, can be the mutual information transfer rate
or the probability of error-free reception. To perform the
power allocation, we consider the function f(T";) having
the following properties:

« A user i whose SIR, T';, is zero, has a BER of 0.5,
and hence an effective throughput of zero. Similarly,
if I; = oo, then the BER of the it" user is zero, and
hence, U; = r;. Therefore, f(T';) satisfies f(0) =0
and limri_mo f(F,) =1.

o f(T;) is an increasing function of T';, i.e., f'(T;) >
0. This property implies that a user derives more
utility when its SIR increases.

« To satisfy the law of diminishing marginal utility
[1], limr; e f’(l“z) = 0 and f”(l“z) < 0, ie,
f(T;) is a concave function of T;.

The power allocation problem can be formulated as
follows:

Maximize » U; (3)
subject to
OSPzSPmaz VZJ (4)
and
> P < P ©)

i
In the absence of constraints (4) and (5), the maximum
value of >, U; is 3, r;, which occurs at T'; = oo V 4.
From the SIR vector, I = [I';]; ., s, and defining S(T)
as

M
S(T) 2 Z %, (6)

P; can be obtained by algebric simplification as

~ T; 1 T(E: H)
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Therefore, if I'; = oo V 4, it leads to P, = oo V
i. When constraints (4) and (5) are incorporated, the
power allocation problem is solved as follows. Let iy,
i2, -- -, 137 be the users arranged in the non-increasing
order of rates, i. e., r;; > ry, > --- > 14,. Let the
powers corresponding to these users be P;,, PB;,, --
P;,,, respectively. Then,

1) Pz'1 = min(Pmaw; Ptot)-
2) Pij:min(Pm,w,Ptot— IIP)2<J<M
Consider a system in which r; = r V 4. If P,y >
MP,,,, then at the optimum point, P, = P4, V 1,
which leads to unequal SIRs for the users. This, in turn,
results in largest utility for the nearest user (i.e., the user
with largest value of h;), and smallest utility for the
farthest user (i.e., the user with the least value of A;). In
other words, this power allocation without pricing results
in near-far unfairness. This near-far unfairness can be
combated by incorporating pricing, which is explained
in the following subsection.

B. Power Allocation incorporating Pricing

In this subsection, we present a framework for allocating
powers to users by incorporating pricing. We present a
pricing function where the price paid by user i, C;, is
defined as follows.
Pih;

G AP+ ©
where A is the pricing parameter and I; = NoW +
212 Di(1—v)h; is the interference seen by user 4. The
price, C;, in (9) represents the ratio of the signal power
of user ¢ to the total power received by user i (i.e., the
sum of the signal power and interference). This pricing
policy results in users with higher SIR paying more than
users with lower SIR. Hence, in a system in which all
users have same r;, the pricing policy results in a higher
price for users who receive larger SIR, and hence they
obtain larger utility (i.e., larger effective data rate). The
net utility derived by each user, U**%, is then defined as

Uret 2y, - C;. (10)

The power allocation problem including the pricing
can then be formulated as an optimization problem to



maximize Y~ U, subject to the constraints (4) and (5).
We first maximize -, U*¢* without the constraints (4)
and (5), which, in effect, is to solve for P;’s to maximize
Upet v i. The optimum power, P;, to maximize Ut is
obtained by solving

aupret

ap;

From (1) and (7), it is observed that there is a one-to-one
mapping between the optimum power vector, P, and the
corresponding SIR vector, I. Hence, we formulate the
power allocation problem as an SIR allocation problem,
and obtain the optimal values of I'; for user ¢ which
maximize U¢*. From T, the optimum power vector, P,
can then be obtained from (7). Therefore, solving (11)
is equivalent to solving for I to satisfy

=0 Vi

(11)

(12)

where

2
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Let '} be the value of T'; that satisfies (12). Let I'* =
[[F];<i<nr- The following theorem presents a necessary
and sufficient condition for the feasibility of an SIR
vector, T'L.

Theorem 2.1: The necessary and sufficient condition for
the SIR vector, I’ = [[';]; ;5 , to be feasible is S(T') <
1. T

From (13), it is observed that

g(s) = (Gi) (1+ g—) 2/ () + (T + Ga) £ (1) - (14

We choose f(T';) such that, in addition to satisfying the
conditions mentioned in Section 1I-A,

2f’(1‘,~) + (Fi + Gi)f”(l“i) <0 VI

so that g(T';) is a decreasing function of I';2. Therefore,
the maximum value of ¢(T';) occurs when T'; = 0.
From (13), it is observed that g(0) = f'(0). Hence, if
A > W f'(0), then (12) cannot be solved for T'; > 0.
Therefore, when f(T';) is chosen to satisfy (15), it fixes
an upper limit on the pricing parameter, A (given by
W f'(0)), to obtain a feasible solution to the power
allocation problem incorporating pricing. It can be shown

(15)

1We omit the proofs of theorems due to lack of space. The detailed
proofs are available in [8].

2Although it appears that (15) is restrictive, it is usually satisifi ed if
f(T") is chosen to be the probability of correct reception in differential
phase shift keying (DPSK) over additive whit Gaussian noise (AWGN)
channels or mutua information in a binary symmetric channel (BSC)
with binary phase shift keying (BPSK).

[8] that if f(T';) is chosen to be the mutual information
in a binary symmetric channel (BSC) with binary phase
shift keying (BPSK), then f(T';) satisfies the properties
mentioned in Section 1I-A and (15). When ¢(T';) is a
decreasing function of T';, it is also possible to find a
lower limit on the pricing parameter \ to solve the power
allocation problem with pricing. This is explained in the
following theorem.

Theorem 2.2: There exists a A* such that, for any A €
(X*, W £'(0)), it is possible to find a feasible SIR vector,
I'*, to solve the power control problem incorporating
pricing.

Let P = [P, B, Py Py ] be the power
vector which forms the solution of the power allocation
problem incorporating pricing without constraints (4)
and (5). The solution to the power allocation problem
incorporating pricing including constraints (4) and (5),
P =[P P; P; Py ], is then obtained as

follows.
1) Letry >riy > 27y
2) P:; :min(€i1aPmaz7Ptot)- -
3) P:; :min(IDijJPmaz;Ptot_ '17:_1 P:;),2S]S
M.

We present the numerical results (i.e., the powers allo-
cated to different users and the effective data rates of
different users) for the system without and with pricing
in Section I11.

C. Asymptotic Behavior

From the formulation in the previous subsection, it
is observed that the optimum SIR allocation leads to
solving (12) M times for M users. In this subsection, we
present the SIR allocation with pricing in a system with
large number of users and large amount of resources,
(i.e., large values of W and P;;).

Theorem 2.3: Let A € (A*, W f'(0)), where A\* is ob-
tained from Theorem 2.2. If rpin < 75 < Tmaz V 4,
and M /W = p, then, for large values of M and W, all
the users obtain equal SIR at the optimum point of the
power allocation problem with pricing. The SIR, 3, is
given by
_ =W
h= Q-v)¥,ri’
where v(A) is an increasing function of A such that
v(A*) =0 and o(W f'(0)) = 1.

(16)

From Theorem 2.3, it is oberved that in a system with
large number of users and large bandwidth, all users



obtain equal SIR, 3, at the optimum point, where (3 is
given by (16).

The spectral efficiency, 7, is defined as the ef-
fective throughput per unit bandwidth, ie., n =
* Zf‘i 1 i f(T';). The asymptotic spectral efficiency, 7
is defined as 7 2 lim v 7. From the value of 8 in
(16), the asymptotic spgch?i’l efficiency is obtained from
the following theorem.

Theorem 2.4: If 3 £ sup, 3, and
N f(B)

sup ——,

5 (1—v)B

then the maximum asymptotic spectral efficiency, n*, is
given by

U (17)

(18)

n* = min(7, prmaz)-
I1l. RESULTS AND DISCUSSION

In this section, we present the numerical results for
the power allocation on the downlink without and with
pricing. The following values are used in the numerical
computations. The cell has 10 users, i.e., M = 10. The
system bandwidth, W = 5 MHz, P, = 2 Watts,
By = 25 Watts, and Ny = 10~8 W/Hz. We consider
channel gain vector, H =

[09 08 08 075 06 05 04 03 02 01 ],
which represents a scenario with both near users and far
users to the base station, and r; = 20 Kbps V i, We take
f(T;) to be the mutual information in a binary symmetric
channel (BSC) with binary phase shift keying (BPSK). It
can be shown that f(T") satisfies the properties mentioned
in Section I1-A and (15). We consider A = W f/(0)/10.

Table | presents the power allocation to users to max-
imize ). U; without pricing. It is observed that P; =
P = 2 Watts V 4, and the SIR, T';, is larger for
the nearest user (i.e., the user with the largest h;) and
least for the farthest user (i.e., the user with least h;).
Therefore, the nearest user obtains a larger utility (i.e.,
larger effective data rate) than the farthest user. Let

T 2 U;/r; be the fraction of data successfully received
by user 4. It is observed that -, = 1 for the nearest
user (due to larger value of SIR), and 7; = 0.71 for the
farthest user (due to lower value of SIR).

The power allocation to users incorporating the pricing
function given by (9), is presented in Table II. It is
observed that the SIRs of all the users are equal at the
optimum point. This is because, at the optimum point,
Eqgn. (12) is satisfied for all the users. From (12) and
(13), it is observed that if G; = Gy, then T'; = Ty at

the optimum point. Therefore, all users obtain the same
SIR, and hence the same utility. Therefore, =; is also
same (r; = 0.94) for all the users.

We also study the power allocation in a system with
different processing gain for each user. Tables Ill and
IV present the power allocation to users in this system
without and with pricing, respectively. The values of the
rate, r;, and the processing gain, G;, are also provided
in Table IV. From Table 1V, it is observed that the SIRs
of users are unequal, and that the user with higher rate
obtains larger SIR. This is because, from (12) and (13), it
is observed that if G; > Gy, then at the optimum point,
T; < I3 However, the variation in the SIR is small,
i.e., the SIR for different users varies between 2.61 and
2.51. According to Theorem 2.3 in Section II-C, all users
obtain equal SIR asymptotically. However,from Table
IV, it is observed that for 10 users, the variation in the
allocated SIR for users is very small (between 2.61 and
2.51) when the proposed pricing policy is incorporated.
This also results in about the same value of =; for all
the users. From Table 1V it is also observed that the
nearest user (i.e., the users with largest value of h;) may
require more power than the farther users (i.e., users with
lower values of h;). This is because, the SIR and rate is
larger for the nearest user and hence, from (7), the power
may be larger. However, from (7), it is also observed
that the powers need not be monotonic, i.e., G; > G|
need not result in P; < P;. The spectral efficiency for
the system with 10 users with unequal processing gains
discussed above, is observed to be 0.099. From Theorem
2.4, the asymptotic spectral efficiency is found to be 0.1.
However, in this case, 7§ > prmaz-

We also studied the power allocation in a system with
M = 32 users and W = 1.25 MHz [8], in which
1 < prmaz- 1IN such a system, the spectral efficiency was
found to be 1.20 and the asymptotic spectral efficiency
by applying Theorem 2.4 was found to be 1.25, i.e., it
was observed that the system with 32 users with 1.25
MHz bandwidth showed values of spectral efficiency,
n, close to the asymptotic spectral efficiency, 7 (e.g.,
n = 1.20 and 7 = 1.25). Results similar to those
obtained using the f(T";) for BSC with BPSK have been
observed when f(T;) is chosen to be the probability of
error-free reception in a system with differential phase
shift keying (DPSK).

IV. CONCLUSION

We studied power allocation on the downlink in CDMA
systems, without and with pricing. We allocated powers

3This also uses the property of f(T';) as given by (15).



to users to maximize the effective system throughput. We
presented a pricing function to price users, and studied
power allocation incorporating this pricing. We showed
that when the processing gains of users are equal, the
power allocation with pricing resulted in equal utility
for all users at the optimum point. We also studied the
asymptotic behavior of the system and showed that when
both the available bandwidth as well as the number
of users become large, all users obtain equal SIR at
the optimum point. We obtained an expression for the
maximum asymptotic spectral efficiency of the system.
A similar approach for power allocation in a multi-cell
environment is also of significant interest, and is a topic
for further investigation.
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% h; T; G; I'; P; U; T;
(kbps) (W) | (kbps)

1 0.9 20 250 | 6.80 2 20.0 1.00
2 0.85 20 250 | 6.51 2 20.0 1.00
3 0.8 20 250 | 6.21 2 20.0 1.00
4 | 0.75 20 250 | 5.91 2 20.0 1.00
5 0.6 20 250 | 4.93 2 19.9 0.99
6 0.5 20 250 | 4.23 2 19.7 0.99
7 04 20 250 | 3.50 2 195 0.98
8 0.3 20 250 | 271 2 18.8 0.94
9 0.2 20 250 | 1.87 2 175 0.88
10 | 01 20 250 | 0.97 2 141 0.71

TABLE |
OPTIMAL POWERS TO MAXIMIZE El U; WITHOUT PRICING.

A
i = Ui/ri, AND = (1/W) Y~ 7 f(I';) ~ 0.038.

s
T

T, G; Ty Py U;
(Kbps) (mw) | (kbps)

0.9 20 250 | 252 | 575 18.7 0.94
0.85 20 250 | 252 | 60.8 18.7 0.94

0.8 20 250 | 252 | 645 18.7 0.94
0.75 20 250 | 252 | 68.7 18.7 0.94

0.6 20 250 | 252 | 855 18.7 0.94
. 250 | 252 | 102.3 18.7 0.94
0.4 20 250 | 252 | 1275 18.7 0.94
0.3 20 250 | 252 | 169.5 18.7 0.94
0.2 20 250 | 252 | 2535 18.7 0.94
0.1 20 250 | 252 | 505.5 18.7 0.94
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TABLE Il
OPTIMAL POWERS TO MAXIMIZE Z, Ug“t INCORPORATING

PRICING.7) 2 (1/W) 3, rif(Ti) ~ 0.037.

7 h; i G; r; P; U; s
(kbps) (W) | (Kbps)

1 | 090 100 50.0 1.36 2 80.3 0.80
2 | 0.85 90 55.5 1.45 2 73.6 0.82
3 | 0.80 80 62.5 1.55 2 66.8 0.84
4 | 0.75 70 714 | 169 2 59.8 0.85
5 | 0.60 60 83.3 1.64 2 50.9 0.85
6 | 050 50 100.0 | 1.69 2 42.8 0.86
7 | 040 40 1250 | 1.74 2 345 0.86
8 | 0.30 30 166.7 | 1.81 2 26.1 0.87
9 | 020 20 250.0 | 1.87 2 17.5 0.88
10 | 0.10 10 500.0 | 1.93 2 8.8 0.88

TABLE Il
OPTIMAL POWERS TO MAXIMIZE Zz U; WITHOUT PRICING.

7i = Uy /ri, AND 7 = (1/W) 3, 7 f(T) A 0.002.

(kbps) (mw (kbps)

.

0.90 100 500 | 261 | 3024 93.9 0.94
0.85 90 555 | 259 | 286.3 84.4 0.94
0.80 80 625 | 258 | 268.7 75.0 0.94
0.75 70 714 | 257 | 249.2 65.6 0.94
0.60 60 833 | 256 | 264.0 56.2 0.94
0.50 50 100.0 | 255 | 261.6 46.8 0.94
0.40 40 125.0 | 254 | 259.3 374 0.94
0.30 30 166.7 | 253 | 257.0 28.0 0.94
0.20 20 2500 | 252 | 254.7 18.7 0.94
0.10 10 500.0 | 251 | 2524 9.3 0.93
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TABLE IV
OPTIMAL POWERS TO MAXIMIZE Z, Ug“t INCORPORATING

PRICING.7) 2 (1/W) 3, rif(L'i) ~ 0.099.




