
416 

Energy Efficiency Analysis of Link Layer 
Backoff Schemes on Point-to-Point 

Markov Fading Links 
P. M. Soni and A. Chockalingam 

Wireless Research Lab 
Department of Electrical Communication Engineering 
Indian Institute of Science, Bangalore 560012, INDIA 

fax: +91-80-360-0563 - e-mail: { sonipm, achocka1)Qece. iisc . ernet. in 

Abstract 
Backoff algorithms are traditionally employed in mul- 
tiple access networks, like Ethernet, to recover from 
packet collisions. In this paper, we propose and carry 
out the analysis for three types of link layer back- 
off schemes-linear, binary exponential, geometn'c-on 
point-to-point wireless fading links, where packet er- 
rors occur non-independently. In such a scenario, the 
backoff schemes are shown to  achieve better energy ef- 
ficiency without compromising much on the link layer 
throughput performance. 
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1 Introduction 
Backoff algorithms are typically used in multiple ac- 
cess networks to  recover from packet collisions. For 
example, a truncated binary exponential backoff 
scheme is employed in Ethernet [l]. The backoff delay 
is increased by larger and larger amounts on each suc- 
cessive collision, up to  a finite number of retransmis- 
sion attempts. Here we propose that backoff schemes 
could be applied beneficially on point-to-point wire- 
less links as well. The motivation arises from the po- 
tential for substantial energy savings when the link 
experiences deep fades and bursty errors. 

During channel fades, it is likely that a large num- 
ber of consecutive packets are received in error due 
to memory in the multipath fading process [2]. A 
backoff scheme at the link layer (LL), applying an 
appropriate backoff rule upon each LL packet error 
event, can hold the channel idle for some specified 
number of slots, thereby reducing the energy spent 
in wastefully sending a big chunk of possible failed 
packet transmissions. This is done a t  a cost of pos- 
sible reduction in the throughput. But, in mobile 
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stations, saving battery power can outweigh a slight 
loss in throughput [3]. 

Nonindependent errors on wireless channels are, with 
reasonable accuracy, modeled by a first-order Markov 
chain in most analyses in literature [4],[5]. Link layer 
ARQ protocols, like Go-Back-N and Selective Re- 
peat, have been analyzed in the presence of nonin- 
dependent errors in [6]-[lo]. However, all these stud- 
ies focus only on throughput and delay performance 
and do not consider energy savings through LL back- 
off strategies. Our new contribution in this letter is 
the proposal and throughput-energy efficiency anal- 
ysis of three easily implementable LL backoff strate- 
gies, namely, linear backoff (LBO), binary exponen- 
tial backoff (BEBO), and geometric backoff (GBO). 
We use the Markov chain representation of the wire- 
less channel with Markov parameters p and (1 - q) 
being the probabilities that the ith packet transmit- 
ted is in success given the (i-l)th packet was success- 
ful and unsuccessful, respectively. Numerical results 
show that the proposed backoff schemes achieve bet- 
ter energy efficiency without compromising much on 
the link layer throughput performance. 

2 LL Backoff Algorithms 
Among the LL ARQ protocols, Selective Repeat (SR) 
gives the best throughput performance. The max- 
imum throughput achieved by ideal SR scheme is 
bounded by (1 - E )  where 6 is the average packet er- 
ror rate on the link [8]. Here we present and analyze 
three different link layer backoff schemes - linear, bi- 
nary exponential, and geometric backoffs - which are 
defined as follows. 

Linear Backoff: In a linear backoff scheme, on i th suc- 
cessive fail of a packet, the LL keeps idle for i number 
of subsequent slots, i.e., the backoff delay grows lin- 
early on each successive fail. 
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Binary Exponential Backoff: In this scheme, the LL 
keeps idle for 2i - 1 number of slots on ith successive 
fail. 

Geometric Backoff: In this scheme, there is a param- 
eter g, 0 < g .L 1. Following an idle or packet fail, 
the LL keeps idle in the next slot with probability g 
(or equivalently, transmits a packet with probability 
1-9). In other words, the expected number of backoff 
slots following a fail is given by g/(1 - 9). 

3 Analysis 
We are interested in calculating the throughput and 
energy efficiency of the above backoff schemes and 
comparing them with the performance of ideal SR 
scheme without backoff. We assume instantaneous 
and perfect feedback in our analysis. The detailed 
mathematical analysis goes as follows. . 

Define Si and yi as the probabilities that success and 
fail occur, respectively, at ( k  + i)th slot given the kth 
slot is a fail for any k 2 1 and i 2 1. Let 1 represent 
a fail, 0 represent a success and '2' represent either of 
them, and let P { A )  denote the probability of event 
A.  Then for i 2 1, 

Observe that, for any i 2 1, 6i +yi = 1. With bound- 
ary conditions 61 = 1 - q and y1 = q, we can write 
recursive relations on Si and yi as, 

Assume that the first packet was transmitted at time 
t = to. We have two cases corresponding to the first 
packet transmitted being a success or a fail. Let T be 
the packet duration, assumed constant. Then a cycle 
is'defined as follows. 

Case(a): First packet transmitted at t = t o  is a suc- 
cess. Let the first fail occur at t = t o  + nT, i.e., 
first n packets are in success. Since the (n + l)th 
packet is a fail, the next D1 slots are kept idle and 
a packet is transmitted again at t = t o  + (n + 1 + 
0 1 ) ~ .  If this packet again fails, next D2 number 
of slots are kept idle and a packet is transmitted 
at t = to  + (n + 1 + D1 + 1 + Dz)r ,  and so on. 
Finally a packet gets through, say, after 1 number 
of attempts (i.e., 1 fails) which was transmitted at  
t = to  + [n + 1 + E',=, D ~ ] T  = t l .  Since the packet trans- 
mitted at tl is a success and we are assuming a first- 
order Markov model, the future evolution of the success- 
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fail-idle sequence is same as that started at to. Notice n,=3 nf=l 

that, for linear backoff, Di = i and for binary expo- 
nential backoff, Di = 2i - 1. The duration tl - to 
is defined as the first cycle. In general, ti is defined 
as the epoch at which the (i + l)th cycle begins (see 
Figure 1). 

Case(b): First packet transmitted at t = t o  is a fail. 
In this case, the transmitter keeps idle for next D1 
slots and makes an attempt a t  the (Dl  + l)th slot. 
Observe that the evolution of the sequence in this case 
is identical to the evolution in Case (a) that started 
at  t = to + nT. 

t,, t,,+nz t. - I I . . .  s s s . . . . .  . s s p  I . . . p  I .  . . . . .  F I  . . . . . .  . .  s . . .  
,. ., 

t 1 n & e s m  fail-idle sequence 
of length 1 + z D, 

c" cycle slans c" cycle emis 

Figure 1: A transmission cycle in LL backoff schemes 

Now define T, = t ,  - tc-l, c 2 1, as the duration of 
the cth cycle. Since r is a constant, we normalize T, 
with r (i.e., T, is the number of slots in a cycle). Ob- 
serve that {T,,c > 1) is Markov renewal process. If 
the first packet is a success, then {T,,c 2 1)  are in- 
dependent and identically distributed (i.i.d) random 
variables. But, If the first packet is a fail, we have 
{T,, c 2 2 )  i.i.d random variables. TI will have a dif- 
ferent distribution, but this does not prevent us from 
applying the Renewal Reward Theorem [ll] which we 
use later in this section. 

Let S,, F, and I ,  be the random variables represent- 
ing the number of successes, fails and idles in cth cy- 
cle, respectively. Let f ( k )  be the probability that 
the length of an 'effective fade' is k ,  where the effec- 
tive fade in a cycle is the total duration of the fail- 
idle sequence in that cycle. Let n, be the duration 
of a cycle, then for BEBO and LBO, the minimum 
value nc can take is 3, because a cycle should consist 
of a t  least one success, one fail and one idle. Write 
k = nf  + ni, where nf  and ni are the number of fails 
and idles, respectively, in that cycle. Observe that, in 
BEBO and LBO schemes, we have constraint on n f ,  
say 1 5 nf  5 r ,  where r is a number dependent on 
n,. Also ni is dependent on n f ,  and ns is dependent 
on both n, and n f .  In other words, for a given cycle 
length n,, if the number of fails nf  is fixed, ni and n, 
are also fixed. Now, the expected renewal life time, 
in number of slots, is given by, 

M r 

n,=3 nf=l  

Similarly, 
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w r  

n,=3 n,=I 

Let K , , T ~  and ~i be the stationary probabilities of 
success, fail and idle, respectively. We calculate these 
stationary probabilities as a reward rate of the above 
renewal process. Take the reward as the total du- 
ration of the fail slots. Then, TF, is the reward in 
the cth cycle. The expected reward accrued till time 
t ,  c(t), is the expected duration of fail slots in [O,t]. 
Now, applying Renewal Reward Theorem [ l l ] ,  

The LHS of the above equation gives the stationary 
probability of fail. In other words, nf = E[F,]/E[T,].  
Similarly, by taking the total success duration and 
idle duration as the reward, we get the stationary 
probabilities of success and idle, respectively as, T, = 
E[Sc]/E[Tc] and xi = E[Ic]/E[Tc]- 

3.1 Linear Backoff 
In linear backoff, we have ni = nf(ni+l) and ns = 
(n, - n t ( n , + 3 ' ) .  Since there should be at least one 
success in a cycle we have the constraint, 
(n, - n f ( n , + 3 ' )  > 0, which gives nf 5 r where, 

r = 1-1 - 1. Then, 

We can obtain the stationary probabilities K , ,  7rf and 
~i by using these values of n,, ni, r and f (.) in equa- 
tions (5)-(8). 

3.2 Binary Exponential Backoff 
In this backoff scheme, the number of idle slots in a 
cycle equals ni = 2(2"f - 1) - nf and the number 
of successes equals n, = n, - 2 ( 2 n f  - 1 ) .  Using the 
same arguments as in the linear backoff, we have the 
constraint, nc - 2 ( P f  - 1) > 0, which gives nf  5 r ,  
where, r = [log (2  + 1)1 - 1 Then, 

Again, using these values of n,, ni, r and f(.) in the 
equations (5)-(8), we get the stationary probabilities 
K ,  , r f  and xi. 

?+uncated BEBO: 

A variant of BEBO, namely, truncated binary expo- 
nential backoff (T-BEBO), is also of interest. In T- 
BEBO, we have a parameter m > O. T-BEBO func- 
tions exactly same as the BEBO till m consecutive 
fails, after which the transmitter gives up the backoff 
and continues with the transmission of the next LL 
packet. The analysis for the T-BEBO is similar to  
BEBO except that the cases in which the number of 
fails is less than or equal to  m and greater than m 
need to be considered separately. When the number 
of fails is greater than m (say, m + k, k > 0), the 
first m of them will be followed by a certain num- 
ber (according to the BEBO rule) of idle slots and 
the remaining k of them will be consecutive. Then, 
we can write nc - 2(2" - 1) - k > 0 which gives 
IC 5 nc - 2m+1 + 1 .  Thus r takes a value which is max- 
imum of (m + n, - 2m+1 + 1 )  and [log, (2  + 1 ) 1 -  1. 
When n f  is less than m, n, and ni takes same values 
as that for BEBO without truncation, but when nf  
is greater than m, we get, ni = 2(2" - 1 )  - m and 
n, = n, - n f  - ni. With these, the expected value of 
T, can be written as, 

w r  

E [ T ~ I  = n c ~ ~ a - ~ ( 1 - ~ )  (IInfSm} . 
n,=3 n f = l  

f (2(Znf - 1 ) )  + I { n f > m } 4 m )  . 
Qnf -m-l (1 - 9 ) )  9 (10) 

where, a(m) = n;"=,7,1 and I{A} is the indicator 
function which is 1 when the event A happens and 0 
otherwise. E[S,], E[F,] and E[I,] for T-BEBO can 
be obtained by replacing nc by n,, nf  and ni, re- 
spectively, in equation (10). Note that m = 00 corre- 
sponds to  BEBO without truncation. 

3.3 Geometric Backoff 
The approach we adopt to  analyze the geometric back- 
off is as follows. Due to  the memoryless property of 
the geometric backoff delay, the system can be mod- 
eled as a finite state Markov chain with the system 
status in a slot being in any one of success, fail, idle 
with possible success and idle with possible fail. De- 
note these states by s, f ,  i, and i f ,  and the station- 
ary probabilities by K , ,  n f ,  xis and K i f  respectively. 
Then, for the Markov chain, the stationary proba- 
bility vector z=[7r8 7rf x i f ] ,  and the transition 
probability matrix P are related by E = KP, where, 

where, p = ( 1  - p ) , i j  = ( 1  - q ) ,  and &! = ( 1  - 9). 
Solving for E = E P, we get, 
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and nj = 7rja + 7 r j t  = 1 - 7rs - nj, where M = 
g2 (p + q - 1) - g ( p  + q) + 1. For all the three backoff 
schemes, the throughput is given by 7rs and the en- 
ergy efficiency by (+) normalized by the fade 
margin ( F )  of the link. We define here one energy 
unit as corresponding to  the transmission of a LL 
packet with a fade margin of 0 dB. For ideal SR with 
no backoff, energy efficiency is given by (1 - E ) / F .  
Note that maximum theoretical energy efficiency is 
achieved when there are no failed packets at all, i.e., 
when nj = 0 which gives 1/F as the theoretical upper 
bound on the achievable energy efficiency. 

For the first-order Markov representation of Rayleigh 
fading, the relation between average packet error rate 
( E ) ,  fade margin ( F ) ,  and parameters p and q are 

and (1 - q)  = Q(8,pO) - Q ( p O , O ) ] / ( e l / F  - l ) ,  where 
8 = +- 2/F(1 - p2) ,  p = Jo(27rfdT) is the correlation 
coefficient of two samples of the complex amplitude of 
the Rayleigh fading process1 taken T seconds apart, 
Jo(.) is the Bessel function of the first kind and zeroth 
order, and Q( .  , a )  is the Marcum Q function. 

given by [5]: E = 1 - e-’/F = (1 - P ) / P  - P - Q) 

4 Results 
We computed the throughput and energy efficiency 
for all three backoff schemes using the channel param- 
eters p and q for different fade margins and a fixed 
normalized Doppler bandwidth f d T  = 0.001. The 
same was found using computer simulation as well. 
The parameter g for the GBO is chosen to be 0.8. At 
900 MHz carrier frequency, fdT = 0.001 corresponds 
to user speed of 1.2 Km/h, link speed of 1 Mbps and 
LL packet size of 1000 bits. The plots in Figure 2 
shows close agreement between analytical and simu- 
lation results. Figure 2 and 3 show that the LBO and 
GBO schemes show good improvement in terms of en- 
ergy efficiency without noticeable fall in the through- 
put compared to  the ideal SR scheme without backoff. 
At a throughput of 0.4, LBO gives an improvement 
of 3.4 dB of energy savings while GBO gives nearly 
2.8 dB. Among all the three schemes, LBO is seen to  
perform best, achieving energy efficiency close to  the 
theoretical upper bound. The BEBO scheme is seen 
to perform poorer. This is due to  the rapid growth of 
exponentiation in backoff delay, which misses possible 
successful transmission attempts during good state 
of the channel. This is bound to  improve if we use 
a truncated backoff, in which the idle length should 
grow only till a maximum value. Such improvement 
is evident from Figure 4 which shows the truncated 

lf,j is the Doppler bandwidth given by v/X, where v is the 
user velocity and X is the carrier wavelength [2]. 

BEBO performance for different values of m. The 
performance analysis of the LL backoff schemes when 
used along with transport protocols like TCP and 
UDP could be an useful extension to  this work. 

::i 
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Figure 2: LL throughput us fade margin performance 
of LL backoff schemes at fdT = 0.001. 
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Figure 3: Energy efficiency us LL throughput perfor- 
mance of LL backoff schemes at fdT = 0.001. 
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