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Abstract

Backoff algorithms are traditionally employed in mul-
tiple access networks, like Ethernet, to recover from
packet collisions. In this paper, we propose and carry
out the analysis for three types of link layer back-
off schemes—linear, binary ezponential, geometric—on
point-to-point wireless fading links, where packet er-
rors occur non-independently. In such a scenario, the
backoff schemes are shown to achieve better energy ef-
ficiency without compromising much on the link layer
throughput performance.

Keywords — Backoff algorithms, fading channels, en-
ergy efficiency.

1 Introduction

Backoff algorithms are typically used in multiple ac-
cess networks to recover from packet collisions. For
example, a truncated binary exponential backoff
scheme is employed in Ethernet [1]. The backoff delay
is increased by larger and larger amounts on each suc-
cessive collision, up to a finite number of retransmis-
sion attempts. Here we propose that backoff schemes
could be applied beneficially on point-to-point wire-
less links as well. The motivation arises from the po-
tential for substantial energy savings when the link
experiences deep fades and bursty errors.

During channel fades, it is likely that a large num-
ber of consecutive packets are received in error due
to memory in the multipath fading process [2]. A
backoff scheme at the link layer (LL), applying an
appropriate backoff rule upon each LL packet error
event, can hold the channel idle for some specified
number of slots, thereby reducing the energy spent
in wastefully sending a big chunk of possible failed
packet transmissions. This is done at a cost of pos-
sible reduction in the throughput. But, in mobile

0-7803-6465-5/00 $10.00 © 2000 IEEE

stations, saving battery power can outweigh a slight
loss in throughput [3].

Nonindependent errors on wireless channels are, with
reasonable accuracy, modeled by a first-order Markov
chain in most analyses in literature [4],[5]. Link layer
ARQ protocols, like Go-Back-N and Selective Re-
peat, have been analyzed in the presence of nonin-
dependent errors in [6]-[10]. However, all these stud-
ies focus only on throughput and delay performance
and do not consider energy savings through LL back-
off strategies. Our new contribution in this letter is
the proposal and throughput-energy efficiency anal-
ysis of three easily implementable LL backoff strate-
gies, namely, linear backoff (LBO), binary exponen-
tial backoff (BEBO), and geometric backoff (GBO).
We use the Markov chain representation of the wire-
less channel with Markov parameters p and (1 — q)
being the probabilities that the it* packet transmit-
ted is in success given the (i —1)t* packet was success-
ful and unsuccessful, respectively. Numerical results
show that the proposed backoff schemes achieve bet-
ter energy efficiency without compromising much on
the link layer throughput performance.

2 LL Backoff Algorithms

Among the LL ARQ protocols, Selective Repeat (SR)
gives the best throughput performance. The max-
imum throughput achieved by ideal SR scheme is
bounded by (1 — €) where € is the average packet er-
ror rate on the link [8]. Here we present and analyze
three different link layer backoff schemes — linear, bi-
nary exponential, and geometric backoffs — which are
defined as follows.

Linear Backoff: In a linear backoff scheme, on i** suc-
cessive fail of a packet, the LL keeps idle for : number
of subsequent slots, i.e., the backoff delay grows lin-
early on each successive fail.
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Binary Ezponential Backoff: In this scheme, the LL
keeps idle for 2¢ — 1 number of slots on i* successive
fail.

Geometric Backoff: In this scheme, there is a param-
eter g, 0 < g < 1. Following an idle or packet fail,
the LL keeps idle in the next slot with probability g
{or equivalently, transmits a packet with probability
1—g). In other words, the expected number of backoff
slots following a fail is given by g/(1 — g).

3 Analysis

We are interested in calculating the throughput and
energy efficiency of the above backoff schemes and
comparing them with the performance of ideal SR
scheme without backoff. We assume instantaneous
and perfect feedback in our analysis. The detailed
mathematical analysis goes as follows.

Define §; and +; as the probabilities that success and
fail occur, respectively, at (k +1)t" slot given the k**
slot is a fail for any k > 1 and 7 > 1. Let 1 represent
a fail, 0 represent a success and ‘z’ represent either of
them, and let P{A} denote the probability of event
A. Then for¢ > 1,

i—1

§; = P{0zz .- 221} (1)
i-1
vi=P{lzz - -zz|1} (2)

Observe that, for any ¢ > 1, §; ++; = 1. With bound-
ary conditions §; = 1 — ¢ and 3 = ¢, we can write
recursive relations on §; and ~; as,

di=vic1(l—q) +8i_1p, i 22 3)

Yi =Yic1q +6ic1(1 = p), i > 2 (4)
Assume that the first packet was transmitted at time
t = tp. We have two cases corresponding to the first
packet transmitted being a success or a fail. Let 7 be

the packet duration, assumed constant. Then a cycle
is'defined as follows.

Case(a): First packet transmitted at t = tp is a suc-
cess. Let the first fail occur at ¢ = t5 + nr7, ie,
first n packets are in success. Since the (n + 1)t
packet is a fail, the next D; slots are kept idle and
a packet is transmitted again at t = to + (n + 1 +
D,)7. 1If this packet again fails, next D, number
of slots are kept idle and a packet is transmitted
att = to+ (n+ 1+ Dy + 1+ D2)r, and so on.
Finally a packet gets through, say, after [ number
of attempts (i.e., ! fails) which was transmitted at
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that, for linear backoff, D; = ¢ and for binary expo-
nential backoff, D; = 2¢ — 1. The duration t; — tg
is defined as the first cycle. In general, ¢; is defined
as the epoch at which the (i + 1)** cycle begins (see
Figure 1).

Case(b): First packet transmitted at ¢t = t; is a fail.
In this case, the transmitter keeps idle for next D,
slots and makes an attempt at the (D; + 1)** slot.
Observe that the evolution of the sequence in this case
is identical to the evolution in Case (a) that started
at t =tg +nr.

t, t,+nt t.

T
-

TG RN I

T n successes fail-idle sequence T

of length 1+ ¥ D;
i

th
& cycle starts ¢ cycleends

Figure 1: A transmission cycle in LL backoff schemes

Now define T, = t, — t._1,¢ > 1, as the duration of
the ct® cycle. Since T is a constant, we normalize T,
with 7 (i.e., T, is the number of slots in a cycle). Ob-
serve that {T.,c > 1} is Markov renewal process. If
the first packet is a success, then {T},c > 1} are in-
dependent and identically distributed (i.i.d) random
variables. But, If the first packet is a fail, we have
{T¢,c¢ > 2} i.i.d random variables. T} will have a dif-
ferent distribution, but this does not prevent us from
applying the Renewal Reward Theorem [11] which we
use later in this section.

Let S¢, F, and I, be the random variables represent-
ing the number of successes, fails and idles in ¢** cy-
cle, respectively. Let f(k) be the probability that
the length of an ‘effective fade’ is k, where the effec-
tive fade in a cycle is the total duration of the fail-
idle sequence in that cycle. Let n. be the duration
of a cycle, then for BEBO and LBO, the minimum
value n, can take is 3, because a cycle should consist
of at least one success, one fail and one idle. Write
k = ng +n;, where ny and n; are the number of fails
and idles, respectively, in that cycle. Observe that, in
BEBO and LBO schemes, we have constraint on ng,
say 1 < ny < r, where r is a number dependent on
n.. Also n; is dependent on ny, and n, is dependent
on both n. and ny. In other words, for a given cycle
length n, if the number of fails ny is fixed, n; and n,
are also fixed. Now, the expected renewal life time,
in number of slots, is given by,

E[T)= > n. Y p™ V(1 -p)flns+n). (5

ne=3 ng=1

t=tot+[n+1+ 22___1 D;]r = t;. Since the packet trans- Similarly,

.mitted at t; is a success and we are assuming a first-

order Markov model, the future evolution of the success-

fail-idle sequence is same as that started at to. Notice

ES) =Y > nap™ A -p)f(ng +ni), (6)

ne=3ng=1
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E[Fc] = Z Z nfp(n'_l)(l -p)f(nf +n1')v (7)

ne=3 ng=1

BlL)= Y Y np™ V(A -p)f(ns +ni). (8)

ne=3ny=1

Let ms,m¢ and m; be the stationary probabilities of
success, fail and idle, respectively. We calculate these
stationary probabilities as a reward rate of the above
renewal process. Take the reward as the total du-
ration of the fail slots. Then, 7F, is the reward in
the ct? cycle. The expected reward accrued till time
t, c(t), is the expected duration of fail slots in [0,¢].
Now, applying Renewal Reward Theorem [11],

c(t) 7TE[F] E[F]

elt) _ _ oy
A = = B~ BT 22

(9)

The LHS of the above equation gives the stationary
probability of fail. In other words, 7y = E[F;]/E[T¢].
Similarly, by taking the total success duration and
idle duration as the reward, we get the stationary
probabilities of success and idle, respectively as, =
E|[S.])/E[T,] and m; = E[I.)/E[T]-

3.1 Linear Backoff

In linear backoff, we have n; = 21-(—"2@ and n,

(ne - ﬁf(—”21+—3)) Since there should be at least one
success in a cycle we have the constraint,

m{ﬁl) > 0, which gives ny < r where,

r= [:@.‘_"’] — 1. Then,

)={

We can obtain the stationary probabilities 7s, 7y and
m; by using these values of ng, n;, r and f(-) in equa-
tions (5)—(8).

(ne -

d2
5n,+l H::LI=2 Tm

tnp=1

:1<ng<r

nf(nf + 3)
g (Rl

3.2 Binary Exponential Backoff

In this backoff scheme, the number of idle slots in a
cycle equals n; = 2(2® — 1) — ny and the number
of successes equals ny; = n, — 2(2" — 1). Using the
same arguments as in the linear backoff, we have the
constraint, n, — 2(2™ — 1) > 0, which gives ny <r,
where, 7 = [log (% + 1)] — 1 Then,

2
Ogns Hz;f:_ll Yom
Again, using these values of n,, n;, r and f(-) in the

equations (5)—(8), we get the stationary probabilities
wg, Ty and ;.

ng=1

s -1 - s

Truncated BEBO:
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A variant of BEBO, namely, truncated binary expo-
nential backoff (T-BEBO), is also of interest. In T-
BEBO, we have a parameter m > 0. T-BEBO func-
tions exactly same as the BEBO till m consecutive
fails, after which the transmitter gives up the backoff
and continues with the transmission of the next LL
packet. The analysis for the T-BEBO is similar to
BEBO except that the cases in which the number of
fails is less than or equal to m and greater than m
need to be considered separately. When the number
of fails is greater than m (say, m + k,k > 0), the
first m of them will be followed by a certain num-
ber (according to the BEBO rule) of idle slots and
the remaining k of them will be consecutive. Then,
we can write n, — 2(2™ — 1) — k > 0 which gives
k < n,—2m*!1+1. Thus r takes a value which is max-
imum of (m +n,—2™*! +1) and [log, (5 +1)] - 1.
When n; is less than m, n, and n; takes same values
as that for BEBO without truncation, but when n;
is greater than m, we get, n; = 2(2™ -~ 1) — m and
ng = n. —nyg —n,;. With these, the expected value of
T, can be written as,

o0

20 > nep™ (1= p) (TIgny<my -

ne=3ns=1
22" = 1)) + Itn, >mya(m) -
M (1-9q)),

where, a(m) = [[}Z, 72 and I;,y is the indicator
function which is 1 when the event A happens and 0
otherwise. E[S.], E[F.] and E[I] for T-BEBO can
be obtained by replacing n. by ns, ny and n;, re-
spectively, in equation (10). Note that m = oo corre-
sponds to BEBO without truncation.

E[T.]

(10)

3.3 Geometric Backoff

The approach we adopt to analyze the geometric back-
off is as follows. Due to the memoryless property of
the geometric backoff delay, the system can be mod-
eled as a finite state Markov chain with the system
status in a slot being in any one of success, fail, idle
with possible success and idle with possible fail. De-
note these states by s, f,is and if, and the station-
ary probabilities by =y, my,m;, and m;, respectively.
Then, for the Markov chain, the stationary proba-
bility vector m=[m, m; m;, 7;,], and the transition
probability matrix P are related by # = = P, where,

p P 0 0

p=|97 91 91 94 (11)
gp gp 9p 9P
99 99 99 94

where, 5 = (1 -p),§ = (1 —¢q), and g = (1 — g).
Solving for # = = P, we get,

‘ (1-9(1-q)
(2-p-q)(1-gp)

(12)

Ts
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(1-p)
T = -M, 13
1= Eop-0(-mw 13)
and 7, = m, + m, = 1 —m; — 7wy, where M =

92(p+g—1) —g(p+q)+1. For all the three backoff
schemes, the throughput is given by 7, and the en-

FT—EE normalized by the fade
margin (F) of the link. We define here one energy
unit as corresponding to the transmission of a LL
packet with a fade margin of 0 dB. For ideal SR with
no backoff, energy efficiency is given by (1 — €)/F.
Note that maximum theoretical energy efficiency is
achieved when there are no failed packets at all, i.e.,
when 7y = 0 which gives 1/F as the theoretical upper
bound on the achievable energy efficiency.

ergy efficiency by (

For the first-order Markov representation of Rayleigh
fading, the relation between average packet error rate
(¢), fade margin (F), and parameters p and g are
given by [5): e = 1—e"/F = (1-p)/(2-p—q)
and (1 - Q) = Q(o) p0) - Q(pe’e)]/(el/F - 1)7 where
0= /2/F(1-p?), p=Jo(2nf4T) is the correlation
coefficient of two samples of the complex amplitude of
the Rayleigh fading process' taken T' seconds apart,

Jo(+) is the Bessel function of the first kind and zeroth
order, and Q(-,-) is the Marcum @ function.

4 Results

We computed the throughput and energy efficiency
for all three backoff schemes using the channel param-
eters p and ¢ for different fade margins and a fixed
normalized Doppler bandwidth f;7 = 0.001. The
same was found using computer simulation as well.
The parameter g for the GBO is chosen to be 0.8. At
900 MHz carrier frequency, f4T = 0.001 corresponds
to user speed of 1.2 Km/h, link speed of 1 Mbps and
LL packet size of 1000 bits. The plots in Figure 2
shows close agreement between analytical and simu-
lation results. Figure 2 and 3 show that the LBO and
GBO schemes show good improvement in terms of en-
ergy efficiency without noticeable fall in the through-
put compared to the ideal SR scheme without backoff.
At a throughput of 0.4, LBO gives an improvement
of 3.4 dB of energy savings while GBO gives nearly
2.8 dB. Among all the three schemes, LBO is seen to
perform best, achieving energy efficiency close to the
theoretical upper bound. The BEBQO scheme is seen
to perform poorer. This is due to the rapid growth of
exponentiation in backoff delay, which misses possible
successful transmission attempts during good state
of the channel. This is bound to improve if we use
a truncated backoff, in which the idle length should
grow only till a maximum value. Such improvement
is evident from Figure 4 which shows the truncated

1f, is the Doppler bandwidth given by v/X, where v is the
user velocity and X is the carrier wavelength [2].

419

BEBO performance for different values of m. The
performance analysis of the LL backoff schemes when
used along with transport protocols like TCP and
UDP could be an useful extension to this work.
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Figure 2: LL throughput vs fade margin performance
of LL backoff schemes at fyT = 0.001.
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Figure 3: Energy efficiency vs LL throughput perfor-
mance of LL backoff schemes at f3T = 0.001.
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