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Abstract—Orthogonal time frequency space (OTFS) modula-
tion provides robust communication in doubly-selective channels
owing to its non-fading nature in the delay-Doppler (DD) domain.
In this paper, for the first time in the literature, we propose
a novel transmission scheme where the performance of OTFS
is further enhanced through the use of channel modulation
(a.k.a media-based modulation). In channel modulation (CM),
radio frequency (RF) mirrors placed in the near-field of the
transmit antenna are controlled by information bits, which create
different channel fade realizations that form the CM alphabet.
The proposed OTFS-CM scheme is shown to simultaneously offer
the benefits of robustness to high-Doppler due to DD signal
processing in OTFS and an additional SNR gain due to the
improved distance properties of the signal set due to CM. For
example, simulation results show that, at a bit error rate (BER)
of 10−4, the proposed OTFS-CM scheme achieves an SNR gain
of about 1 to 4 dB compared to OTFS without CM, which is
attributed to the enhanced distance profile of the OTFS-CM
signal set. For the same reason, the SNR gain increases with
increase in the dimensionality of the signal at the receiver and
the number of RF mirrors.

Index Terms—OTFS modulation, delay-Doppler domain, dis-
crete Zak Transform, channel modulation, distance profile.

I. INTRODUCTION
Future wireless communication systems are envisioned to

support high data rate transmissions under diverse operational
scenarios that include high-mobility scenarios. The dynamic
nature of wireless channels in high-mobility conditions makes
them doubly dispersive, with multipath fading causing time
dispersion and Doppler shifts causing frequency dispersion.
Multicarrier modulation schemes such as OFDM can mitigate
the inter-symbol interference caused due to time dispersion,
but they face performance degradation due to inter-carrier
interference caused by loss of orthogonality among subcarriers
due to Doppler shifts. Whereas, orthogonal time frequency
space (OTFS) modulation, a modulation scheme in the delay-
Doppler (DD) domain, offers robust performance in high-
Doppler scenarios [1],[2].

Central to the OTFS modulation scheme is the multiplexing
of information symbols in the DD domain and converting
them to time domain for transmission (and vice versa at the
receiver). In the first five years of OTFS research since its
inception in 2017, this conversion was done in two steps,
where the second step involves the legacy multicarrier (MC)
modulation scheme [3]. Hence this scheme is referred to
as MC-OTFS scheme. More recent research on OTFS has
proposed the use of Zak transform approach to convert DD
domain symbols to time domain in a single step [4],[5],[6].
This approach is referred to as Zak-OTFS. Compared to MC-
OTFS approach, the Zak-OTFS approach has been shown to
achieve better robustness to large Doppler spreads [5],[6].
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Also, being attractive for practical implementation, a discrete
Zak transform based OTFS (DZT-OTFS) approach has also
been investigated recently [7],[8],[9]. In this paper, we propose
a transmission scheme that further enhances the DZT-OTFS
performance using channel modulation (a.k.a media-based
modulation) [10],[11],[12].

Channel modulation (CM) works on the principle that
changing the radio frequency (RF) properties (e.g., any one or
more of permittivity, permeability, resistivity) of the propaga-
tion environment close to the transmitter affects the end-to-end
channel, and hence the magnitude and phase of the received
signal [10]. Consequently, in a rich scattering environment,
a small perturbation in the environment close to the trans-
mitter will be augmented by many random reflections in the
propagation path, resulting in an overall independent end-to-
end channel realization. In CM, such near-field perturbations
are created intentionally by switching ON/OFF RF elements
placed near the transmitter (called RF mirrors) using informa-
tion bits. Different combinations of information bits (called
as mirror activation patterns) result in different channel real-
izations and these realizations are used as the CM alphabet to
convey information bits. CM offers MIMO benefits at reduced
RF hardware complexity/cost and improved performance due
to good distance properties of the CM alphabet [11].

Inspired by the positive aspects of OTFS and CM, in this
paper, we propose to enhance the performance of OTFS further
by using CM, which has not been reported before. We call the
proposed scheme as OTFS-CM scheme. The OTFS module
considered in the proposed OTFS-CM scheme is the DZT-
OTFS scheme in [8],[9]. The new contributions in the paper
can be summarized as follows.

• First, we develop an end-to-end input-output relation for
the proposed OTFS-CM scheme.

• We also derive an upper bound on the bit error rate (BER)
performance of the proposed scheme under maximum
likelihood (ML) detection. The upper bound is shown to
be tight at high signal-to-noise ratios (SNRs).

• We further analyze the bit error performance through
extensive simulations considering different system con-
figuration settings using mimimum mean square error
(MMSE) detection. Our simulation results show that 1)
for the same bits per channel use (bpcu), the OTFS-CM
scheme offers an SNR gain in the range 1 dB to 4 dB
compared to OTFS without CM, 2) OTFS-CM performs
better than OFDM with CM, and 3) the SNR gain in
OTFS-CM compared to OTFS without CM increases with
increase in the dimensionality of the received signal and
the number of RF mirrors. The improved performance
in the proposed scheme is attributed to the improved
distance properties of the proposed OTFS-CM signal set.



Fig. 1: Proposed OTFS-CM scheme.

II. SYSTEM MODEL

The proposed OTFS scheme with channel modulation
(OTFS-CM) is shown in Fig. 1. The transmitter uses a single
transmit antenna and the receiver uses nr receive antennas.
Discrete Zak transform based OTFS (DZT-OTFS) waveform is
used for multiplexing QAM/PSK symbols in the DD domain
[8],[9]. Each OTFS frame consists of L delay bins and K
Doppler bins, and KL information symbols drawn from an
M -ary QAM/PSK alphabet A are mounted on the KL DD
bins. In addition, channel modulation (a.k.a media based
modulation [10],[11]) is used to convey additional information
bits, using different fade realizations of the wireless channel as
the channel modulation (CM) alphabet B. To realize the CM
alphabet, mrf passive RF mirrors are placed in the near-field
of the transmit antenna. These mrf mirrors are controlled (i.e.,
switched ON/OFF) by mrf bits in one OTFS frame duration.
Different ON/OFF patterns of the mirrors result in different
fade realizations at the receiver array, and the resulting nr-
length fade coefficient vectors form the CM alphabet B. The
number of fade realizations, i.e., the CM alphabet size, is
|B| = 2mrf . Therefore, the total number of bits sent in one
OFTS frame is KL log2 |A|+ log2 |B|, and the achieved rate
in the proposed OTFS-CM scheme, in bits per channel use
(bpcu), is given by ηotfs-cm = 1

KL (KL log2 M + mrf ) bpcu.
In the following subsection, we introduce the basic DZT-OTFS
system model.
A. Basic DZT-OTFS system model

In this subsection, we present the basic DZT-OTFS sys-
tem model and the input-output relation assuming nr = 1
[8],[9], and subsequently extend this system model for the
proposed OTFS-CM scheme with nr ≥ 1. The basic DZT-
OTFS transceiver, assuming nr = 1, is shown in Fig. 2. In
DZT-OTFS, KL information symbols {Zx[k, l] ∈ A, k =
0, · · · ,K − 1, l = 0, · · · , L − 1} are multiplexed over a
K × L DD grid, where K and L are the number of Doppler
and delay bins, respectively. The K × L DD grid is defined
as

{(
k∆ν = k

KLTs
, l∆τ = lTs

)
, k = 0, · · · ,K − 1, l =

0, · · · , L − 1
}

, where Ts = 1
B is the symbol duration, B is

the bandwidth available for communication, and ∆τ = Ts

and ∆ν = 1
KLTs

are the delay and Doppler resolutions,
respectively. The information symbols multiplexed in the DD
grid are converted into time domain using inverse DZT (IDZT)
operation as

x[n] =
1√
K

K−1∑
k=0

Zx[k, (n)L]e
j2π

⌊n/L⌋
K , (1)

Fig. 2: Basic DZT-OTFS transceiver.

where ⌊·⌋ and (·)L denote the floor and modulo-L operators,
respectively. A cyclic prefix (CP) of length NCP is added
to mitigate inter-frame interference. The sequence x[n] is
converted into a continuous time-domain signal x(t) using
transmit pulse ptx(t), 0 ≤ t ≤ Ts, as

x(t) =

N+NCP−1∑
n=0

x[(n−NCP)N ]ptx(t− nTs), (2)

where N = KL and 0 ≤ t ≤ (N + NCP)Ts. The signal x(t)
passes through a doubly-selective channel with P resolvable
DD paths, whose response is given by

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (3)

where hi, τi, and νi are the channel coefficient, delay, and
Doppler associated with the ith path, respectively. The ith
path’s delay τi = (αi + ai)Ts, where αi and ai ∈ (−0.5, 0.5]
are the integer and fractional parts, respectively. Similarly, the
ith path’s Doppler νi =

(βi+bi)
KLTs

, where βi and bi ∈ (−0.5, 0.5]
are the integer and fractional parts, respectively. The received
time-domain signal can then be expressed as

r(t) =

P∑
i=1

hi

N+NCP−1∑
n=0

x[(n−NCP]ptx(t− τi − nTs)

ej2πνit + w(t),

(4)

where w(t) is the additive noise. The received signal r(t)
is matched filtered using the receive pulse prx(t), by taking
prx(t) = ptx(t). The matched filtered output y(t) is sampled
at t = mTs, m = 0, 1, · · · , N+Ncp−1, and the Ncp samples
corresponding to the CP are discarded. The resulting time-
domain received sequence y[m] can be expressed as [8]

y[m] =

P∑
i=1

hie
j2πτiνi

N−1∑
n=0

x[n]ei[n]gi[m− n] + v[m], (5)

where m,n = 0, · · · , N−1, v[m] is the additive noise sample
at the output of the matched filter operation, ei[n] = ej2π

ki
KLn,

ki = NTsνi, and

gi[n] =
sin(π(n− li)

π(n− li)

cos(γπ(n− li))

1− (2γ(n− li))2
, li =

τi
Ts

,

where raised cosine (RC) pulses with roll-off factor γ are
assumed for ptx(t) and prx(t). The sequences ei[n] and gi[n]
account for the effect of delay and Doppler of the ith path.



Equation (5) can be written as

y[m] =

P∑
i=1

h
′

iyi[m] + v[m], (6)

where

yi[m] =

N−1∑
n=0

x[n]ei[n]gi[m− n], (7)

and h
′

i = hie
j2πτiνi . The discrete time-domain received

sequence in (6) is converted into DD domain using DZT
operation as

Zy[k, l] =
1√
K

K−1∑
n=0

y[l + nL]e−j2π k
K n. (8)

The DD representation of (6) and (7) can be expressed as

Zyi
[k, l] =

L−1∑
m=0

K−1∑
n=0

Zx[n,m]Zei [k−n,m]Zgi [k, l−m], (9)

and

Zy[k, l] =
P∑
i=1

h
′

iZyi
[k, l] + Zν [k, l], (10)

where Zyi , Zei , and Zgi denote the DZT of the sequences yi,
ei, and gi, respectively. The DD domain input-output relation
in (10) can be obtained in the form

ydd = xddHdd + vdd, (11)

where xdd ∈ A1×N and ydd,vdd ∈ C1×N are vectorized
column-wise such that ydd(k+Kl) = Zy[k, l], xdd(k+Kl) =
Zx[k, l], vdd(k + Kl) = Zv[k, l] for k = 0, · · · ,K − 1,
l = 0, · · · , L − 1, and Hdd ∈ CN×N is the effective DD
domain channel matrix which can be written in the form

Hdd =

P∑
i=1

h
′

iEiGi. (12)

The matrix Ei in (12) is a block diagonal matrix with matrices
{Bu}Lu=1 along the diagonal, where Bu is a K × K matrix
whose jth row is Bu[j − 1, :] = (Zei [:, u − 1])TPj−1

K , u =
1, · · · , L, j = 1, · · · ,K, and PK is a K ×K basic circulant
permutation matrix (BCPM) [13]. The matrix Gi is an N×N

matrix given by Gi =

AQ1
...

AQL

 , where A is a K ×N block

matrix given by A = [diag{Zgi [:, 0]}, · · · , diag{Zgi [:, L−1]}]
with diag{c} denoting a diagonal matrix with elements of c,
and Qu = Pu−1

L ⊗ IK be an N ×N matrix, where PL is an
L× L BCPM and ⊗ operator denotes Kronecker product.

III. PROPOSED OTFS-CM SCHEME AND ANALYSIS

In this section, we extend the basic DZT-OTFS system
model for nr = 1 in (11) to the proposed OTFS-CM scheme
for nr ≥ 1 and analyze it. In OTFS-CM, mrf RF mirrors at
the transmitter are controlled by mrf bits in one OTFS frame
time. A given realization of mrf bits that control the mrf

mirrors is called a mirror activation pattern (MAP). There are
Nm = 2mrf possible MAPs. The fade coefficient realizations
are different for different MAPs (due to MAP-induced RF
mirror perturbations in the near-field of the transmit antenna

getting augmented at the far-field receiver), while the delay and
Doppler realizations remain same for all MAPs. The overall
OTFS-CM effective channel matrix and the OTFS-CM signal
set are obtained as follows.

OTFS-CM effective channel matrix: Let Hj
dd,i denote the

N ×N effective channel matrix between the transmit antenna
and the ith receive antenna (i = 1, 2, · · · , nr) corresponding
to the jth MAP (j = 1, 2, · · · , Nm), following the definition
of the Hdd matrix in (12). Also, define a NmN ×N channel
matrix Hdd,i by staking matrices Hj

dd,i, j = 1, · · · , Nm, as

Hdd,i =


H1

dd,i
H2

dd,i
...

HNm

dd,i .

 . (13)

Finally, stack the Hdd,i matrices, i = 1, 2, · · · , nr, to define
the overall NmN × nrN effective OTFS-CM channel matrix,
denoted by H̄dd, as

H̄dd = [Hdd,1 Hdd,2 · · · Hdd,nr ] . (14)

OTFS-CM signal set: The basic DZT-OTFS transmit signal
vector xdd is a 1 × N vector of s as defined in (11). The
OTFS-CM transmit signal vector x̄dd is a 1 × NmN vector
consisting of (Nm − 1) zero vectors each of size 1×N , and
one basic DZT-OTFS transmit vector xdd of size 1×N . The
location of the xdd vector in the x̄dd vector is determined by
the MAP index j, j = 1, 2, · · · , Nm. The xdd vector will carry
N information symbols and the MAP index j is chosen based
on mrf information bits. Denoting the basic DZT-OTFS signal
set as S = A1×N and defining S0 = S∪{0}, where 0 is 1×N
zero vector, the OTFS-CM signal Sotfs-cm can be written as

Sotfs-cm =
{
s̄ ∈ SNm

0 : s̄ =
[
0 0 · · · s

jth position
· · · 0 0

]
,

s ∈ S, j ∈ {1, 2, · · · , Nm}
}
. (15)

Using the OTFS-CM signal set definition in (15) and the
overall effective channel matrix in (14), the end-to-end input-
output relation in OTFS-CM can be written in the form

ȳdd = x̄ddH̄dd + v̄dd, (16)

where x̄dd ∈ Sotfs-cm is the OTFS-CM transmit vector, ȳdd,
v̄dd ∈ C1×nrN are the received vector and noise vector,
respectively, and H̄dd ∈ CNmN×nrN is the overall effective
channel matrix.

OTFS-CM signal detection: The system model in (16) can
be used to detect the OTFS-CM transmit vector (and hence
the associated information bits) at the receiver. The optimum
maximum-likelihood (ML) solution vector ˆ̄xdd,ML ∈ Sotfs-cm is
given by

ˆ̄xdd,ML = argmin
x̄dd ∈ Sotfs-cm

∥ȳdd − x̄ddH̄dd∥2. (17)

The detected ML vector ˆ̄xdd,ML is mapped back to the mrf

MAP index bits and the N information symbols in the OTFS
frame. While the ML detection rule in (17) by exhaustive
enumeration of x̄dd is feasible for small-sized frames (small
values of N ), it becomes infeasible for large frame sizes



due its exponential complexity. For large frame sizes, mini-
mum mean square error (MMSE) detection with polynomial
(cubic) complexity can be used. The MMSE solution vector
˜̄xdd,MMSE ∈ C1×NmN is given by

˜̄xdd,MMSE = ȳddH̄
H
dd(H̄ddH̄

H
dd + σ2I)−1, (18)

where I is a NmN ×NmN identity matrix. From the MMSE
solution vector ˜̄xdd,MMSE, the mrf MAP index bits and the
N information symbols in the OTFS frame are decoded as
follows. A vector v ∈ R1×Nm is defined such that its ith
element is computed as

v[i] =

iN∑
q=(i−1)N+1

|˜̄xdd,MMSE[q]|2, i = 1, 2, · · · , Nm. (19)

The decoded MAP index ĵ is obtained from vector v as

ĵ = argmax
i∈{1,2,··· ,Nm}

v[i]. (20)

The decoded MAP index ĵ is mapped back to the correspond-
ing mrf bits. Now, define a vector z ∈ C1×N such that is nth
element is

z[n] = ˜̄xdd,MMSE[(ĵ − 1)N + n], n = 1, 2, · · · , N. (21)

The nth decoded symbol in the OTFS frame is obtained as

x̂dd[n] = argmin
x∈A

|x− z[n]|2, n = 1, 2, · · · , N. (22)

A. Upper bound on the ML performance of OTFS-CM
The input-output relation for basic DZT-OTFS presented in

(11) can be expressed in the form [9]

ydd = hX+ vdd, (23)

where X ∈ CP×N can be expressed as

X = (IP ⊗ xdd)

G1E1

...
GPEP

, (24)

and
h = [h

′

1 h
′

2 · · ·h
′

P ]. (25)

Likewise, the input-output relation for the OTFS-CM system
model in (16) can be equivalently expressed as

ȳdd = h̄X̄+ v̄dd, (26)

where h̄dd = [h1
1 · · ·h

j
i · · ·hNm

nr
], hj

i represents the equivalent
fade coefficient vector for ith receive antenna and jth MAP in
the form of the h vector in (25), and X̄ is a PNmnr ×Nnr

matrix expressed as

X̄ = Inr
⊗ X̃dd. (27)

In (27), X̃dd is a PNm × N matrix obtained by stacking X
(obtained in (24)) and Z0 (zero matrix of size P × N ) such
that

X̃dd =


Z0

...
X
...

Z0

 ← jth position, (28)

where X occupies the jth position, i.e., the MAP index in
X̃dd.The pairwise error probability (PEP) expression between
two distinct transmitted signal vectors x̄p

dd and x̄q
dd can be

obtained as

P (x̄p
dd → x̄q

dd|h̄) = P (∥ȳdd − h̄X̄q∥ < ∥ȳdd − h̄X̄p∥) (29)

= Q

√
∥h̄(X̄q − X̄p)∥2

2N0

 , (30)

where N0 is the noise variance, and X̄p and X̄q are the
equivalent matrix representations of x̄p

dd and x̄q
dd, respectively.

Using Chernoff bound, we can write

P (x̄p
dd → x̄q

dd) ≤ Eh̄

{
1

2
exp

(
∥h̄(X̄q − X̄p)∥2

4N0

)}
, (31)

where Eh̄ denotes the expectation operation over the random
vector h̄. hj

i is a unit energy random vector with its elements
having identical and independent Gaussian distribution. Hence
elements of hj

i have zero mean and 1/P variance. Using SVD
decomposition and taking expectation over h̄, (31) can be
simplified as

P (x̄p
dd → x̄q

dd) ≤
1

2

r∏
l=1

1

1 +
λlpq

4PN0

, (32)

where r is the rank of (X̄q − X̄p) and λlpq is the lth eigen
value of (X̄q−X̄p)(X̄q−X̄p)

H . Using union bound, an upper
bound on the BER of OTFS-CM with ML detection can be
obtained as

Pe ≤ 1

Q(KL log2 M +mrf )

Q∑
p=1

Q∑
q=1,q ̸=p

δ(x̄p
dd, x̄

q
dd)

·P (x̄p
dd → x̄q

dd), (33)

where δ(x̄p
dd, x̄

q
dd) is the hamming distance between x̄p

dd and
x̄q

dd and Q = Nm|A|KL, where |.| denotes the cardinality of
the set.

B. Comparison of minimum distance of received OTFS and
OTFS-CM signal sets

The relative performance of OTFS and OTFS-CM systems
at high SNRs can be assessed by obtaining a metric based
on the ratio of minimum distances of the received signal
sets of these systems. Under same channel constraints (same
number of paths, delays and Dopplers), Hdd in OTFS and
H̄dd in OTFS-CM are generated. Let SH

rx,otfs and SH
rx,otfs-cm

denote the received signal sets of OTFS and OTFS-CM,
respectively, for a given channel realization in the absence of
noise, and let dH

min,otfs and dH
min,otfs-cm represent the minimum

distance between pairs of signal vectors in SH
rx,otfs and SH

rx,otfs-cm,
respectively, for the given channel realization, which can be
expressed as

dH
min,otfs = min

xp

dd,x
q

dd ∈ Sotfs
∥xp

ddHdd − xq
ddHdd∥2, (34)

and

dH
min,otfs-cm = min

x̄p

dd,x̄
q

dd ∈ Sotfs-cm
∥x̄p

ddH̄dd − x̄q
ddH̄dd∥2. (35)



(a) OTFS without CM. (b) Proposed OTFS-CM.

Fig. 3: Distance distribution of signal vectors in the received
signal set.
As the channel matrices in (34) and (35) are random, we use
Monte Carlo simulation to find the average minimum distance
over a large number of channel realizations. Let dmin,otfs and
dmin,otfs-cm denote the average minimum distances which can
be obtained as

dmin,otfs =
1

ns

ns∑
i=1

dH
min,otfs, dmin,otfs-cm =

1

ns

ns∑
i=1

dH
min,otfs-cm,

where ns is the number of channel realizations in the simu-
lation. The ratio of the average minimum distances gives the
SNR gap between the BER performance of these systems at
high SNRs with ML detection, and this SNR gap in dB is
given by

SNRgap = 20 log

(
dmin,otfs-cm

dmin,otfs

)
. (36)

IV. RESULTS AND DISCUSSIONS

In this section, we present the simulated BER performance
of the proposed OTFS-CM scheme for different system set-
tings and compare it with that of OTFS without CM and
OFDM (without and with CM).

A. BER performance of OTFS-CM with ML detection

First, we consider the BER performance for small frame
sizes for which ML detection is feasible. An OTFS system
with K = L = 2 is considered with and without CM. A carrier
frequency (fc) of 4 GHz and νp of 3.75 kHz (hence, τp =
1
νp

= 0.267 ms) are considered. Hence, the delay resolution
is ∆τ =

τp
L = 0.1335 ms and the Doppler resolution is ∆ν =

νp

K = 1.875 kHz. The channel is considered to have 4 paths
(i.e., P = 4) with the DD profile in Table I.

TABLE I: DD profile of the channel.
P (no. of paths) τ (delay) ν (Doppler)

4 [0, 0, 1, 1] ∆τ [0, 1, 0, 1] ∆ν

For the system without CM, the information symbols are
chosen from 4-QAM alphabet and for the system with CM,
the information symbols are chosen from BPSK alphabet with
mrf = 4 RF mirrors. This ensures that the achieved rate is 2
bits per channel use (bpcu) in both the systems.

1) Distance distribution of received signal sets: Figure 3
shows the distribution of the distance between pairs of signal
points in the received signal set for both OTFS without and
with CM for nr = 1. The number of channel realizations
taken in the simulation is ns = 500. The average minimum

Fig. 4: BER performance of OTFS-CM and OTFS without CM
as a function of SNR for nr = 1, 4 under ML detection.

Fig. 5: BER performance of OTFS-CM and OTFS without CM
as a function of SNR for nr = 1, 2, 4 under MMSE detection.

distance dmin,otfs and dmin,otfs-cm obtained are 0.722 and 0.996,
respectively. From (36), the SNRgap at high SNRs can be
calculated to be 20 log 0.996

0.722 = 2.79 dB. This improved
distance profile of the OTFS-CM received signal set results in
its better BER performance compared to OTFS without CM.
This can be seen in Fig. 4 which shows the BER performance
of OTFS-CM and OTFS without CM for nr = 1, 4 and ML
detection. Both simulated BER and upper bound on the BER
are plotted, which shows the bound to be tight at high SNRs,
validating the analysis.

B. BER performance of OTFS-CM with MMSE detection

Since ML detection is prohibitively complex, we have used
MMSE detection for larger frame sizes. Figure 5 shows the
BER performance of OTFS with and without CM under
MMSE detection for K = 2, L = 4, and the (τp, νp) values
considered in Fig. 4. The channel parameters in Table I are
used. Information symbols are chosen from 4-QAM alphabet
for OTFS without CM and BPSK alphabet for OTFS-CM.
Eight RF mirrors (mrf = 8) are used in OTFS-CM to achieve
the same rate of 2 bpcu in both the systems. From Fig.
5, it can be observed that OTFS-CM performs better than
OTFS without CM illustrating the inherent strength of CM
in terms of improving the distance properties of the received
signal set. Also, for the same reason, increasing the number of
receive antennas increases the performance gap between the
two systems in favour of OTFS-CM.



Fig. 6: BER performance of OTFS (with and without CM) and
OFDM (with and without CM) as a function of SNR.

C. BER performance of OTFS-CM and OFDM with CM

In Fig. 6, we present the BER performance of OTFS-
CM in comparison with that of OFDM with CM. The fol-
lowing parameters are considered: bandwidth B = 60 kHz
(Ts = 1

B = 16.67µs), carrier frequency fc = 4 GHz, and
delay requirement T = KLTs = 4.27 ms. Fixing νp = 3.75

kHz gives τp = 1
νp

= 0.267 ms, L =
⌈

B
νp

⌉
= 16, and

K =
⌈

T
τp

⌉
= 16. The number of RF mirrors (mrf ) is chosen

to be 2 and the information symbols are chosen from BPSK
alphabet. Hence, the rate with CM 1.0078 bpcu and the rate
without CM is 1 bpcu. The channel is considered to have
4 paths (P = 4) with uniform power delay profile. For a
given maximum delay τmax and maximum Doppler νmax, the
delay for the ith path is taken to be a random integer from
uniformly sampled from

{
0, 1, · · · , round

(
τmax

Ts

)}
and the

ith path Doppler is taken as νmax cos(θ), where θ is uniformly
distributed in [−π, π]. The τmax is taken to be 8Ts and νmax is
taken to be 937 Hz. MMSE detection and nr = 1, 4 are used.
From Fig. 6, it can be seen that OTFS without CM outperforms
OFDM without CM. Likewise, the proposed OTFS with CM
significantly outperforms OFDM with CM.

D. Effect of mrf and nr on OTFS-CM performance

In Fig. 7, we show the effect of mrf and nr on OTFS-
CM performance considering 8-QAM alphabet. The system
configuration and channel parameters defined in Fig. 6 are
used. The BER performance for mrf = 0, 4, 8 and nr = 4, 8
using MMSE detection are plotted. The achieved rates for
mrf = 0, 4, 8 are 3 bpcu, 3.015625 bpcu, and 3.03125
bpcu, respectively, which are roughly the same. It can be
observed that with increasing number of RF mirrors and
receive antennas, the performance of OTFS-CM improves due
to increase in the dimensionality of the receive signal.

V. CONCLUSIONS

In this work, we proposed a new OTFS-CM scheme that
enhanced the performance of the basic DZT-OTFS scheme in
doubly-selective channels through the use of channel mod-
ulation. For the proposed OTFS-CM scheme, we derived a
compact end-to-end DD domain input-output relation in a

Fig. 7: BER performance of OTFS-CM as a function of SNR
with 8-QAM for different values of mrf and nr.

matrix-vector form, which we used to derive an upper bound
on the BER with ML detection. The upper bound was found
to be tight at high SNRs. We also carried out a detailed BER
performance evaluation through simulations for large frame
sizes and higher-order QAM using MMSE detection. Our
simulation results showed an SNR gain of about 1 dB to 4 dB
in favour of OTFS-CM compared to OTFS without CM. This
improved performance is due to the improved distance proper-
ties of the received OTFS-CM signal set. Also, the OTFS-CM
scheme performed better than OFDM with CM. In this work,
we considered perfect knowledge of the channel. Channel
estimation methods using machine learning techniques for
OTFS-CM that exploit the predictability attribute of the ZAk-
OTFS input-output relation [6] can be taken up as future work.
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