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Abstract—In this paper, we consider the problem of power
allocation in MIMO wiretap channel for secrecy in the presence
of multiple eavesdroppers. Perfect knowledge of the destination
channel state information (CSI) and only the statistical knowledge
of the eavesdroppers CSI are assumed. We first consider the
MIMO wiretap channel with Gaussian input. Using Jensen’s
inequality, we transform the secrecy rate max-min optimization
problem to a single maximization problem. We use generalized
singular value decomposition and transform the problem to a
concave maximization problem which maximizes the sum secrecy
rate of scalar wiretap channels subject to linear constraints on the
transmit covariance matrix. We then consider the MIMO wiretap
channel with finite-alphabet input. We show that the transmit
covariance matrix obtained for the case of Gaussian input, when
used in the MIMO wiretap channel with finite-alphabet input,
can lead to zero secrecy rate at high transmit powers. We then
propose a power allocation scheme with an additional power
constraint which alleviates this secrecy rate loss problem, and
gives non-zero secrecy rates at high transmit powers.

keywords: MIMO wiretap channel, physical layer security, secrecy rate,

multiple eavesdroppers, statistical CSI, finite-alphabet input.

I. INTRODUCTION

Wireless transmissions are vulnerable to eavesdropping due
to their broadcast nature. There is a growing demand to address
the issue of providing security in wireless networks. Secrecy
in wireless communication networks can be achieved using
physical layer techniques, where the legitimate receiver gets
the transmitted information correctly and the eavesdropper
receives no or very little information. Achievable secrecy rates
and secrecy capacity bounds for multiple antenna point-to-
point wiretap channel has been studied in [1]–[4] and point-
to-multipoint wiretap channel has been studied in [5]. In [1],
[6], multiple-input single-output (MISO) wiretap channel is
considered, and secrecy rate is computed assuming statistical
information of the eavesdropper channel. In [7], [8], secrecy
capacity of the multiple-input multiple-output (MIMO) wire-
tap channel has been computed assuming perfect channel
state information (CSI) knowledge of the destination and the
eavesdropper. These works consider secrecy rate when the
input to the channel is Gaussian. In practice, the input to
the channel will be from a finite alphabet set, e.g., 𝑀 -ary
alphabets. The effect of finite-alphabet input on the achievable
secrecy rate for various channels has been studied in [9]–[12].
It has been shown that with finite-alphabet input, increasing the
power beyond a maximum point is harmful as the secrecy rate
curve dips continuously thereafter. In [13], design of optimum
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linear transmit precoding for maximum secrecy rate over
MIMO wiretap channel with finite-alphabet input and with
perfect eavesdropper CSI assumption has been investigated.

In this paper, we consider the problem of power allocation
in MIMO wiretap channel for secrecy in the presence of
multiple eavesdroppers. Our approach to study this problem,
which is adopted in this paper, is summarized as follows.
First, we consider the MIMO wiretap channel with Gaussian
input and knowledge of statistical CSI of the eavesdroppers.
We transform the secrecy rate max-min optimization problem
with Gaussian input into a single maximization problem using
Jensen’s inequality. Generalized singular value decomposition
(GSVD) is used to transform the problem to a concave
maximization problem which maximizes the sum secrecy rate
of scalar wiretap channels subject to linear constraints on
the transmit covariance matrix. We then consider the MIMO
wiretap channel with finite-alphabet input and knowledge of
statistical CSI of the eavesdroppers. It is found that when the
transmit covariance matrix obtained for the case of Gaussian
input is used in the MIMO wiretap channel with finite-alphabet
input, the secrecy rate goes to zero at high transmit powers.
Therefore, we propose a power allocation scheme with an
additional power constraint to deal with this secrecy rate loss.
The proposed scheme is shown to alleviate the secrecy rate
loss problem and gives non-zero secrecy rates at high transmit
powers.
Notations : Vectors are denoted by boldface lower case

letters, and matrices are denoted by boldface upper case letters.
𝑨 ∈ ℂ𝑁1×𝑁2 implies that 𝑨 is a complex matrix of dimension
𝑁1 × 𝑁2. 𝑨 ર 0 denotes that 𝑨 is a positive semidefinite
matrix. 𝑰 denotes the identity matrix. Transpose and complex
conjugate transpose operations are denoted with [.]𝑇 and [.]∗,
respectively. 𝑑𝑖𝑎𝑔(𝒂) denotes a diagonal matrix with elements
of vector 𝒂 on the diagonal of the matrix. 𝑑𝑖𝑎𝑔(𝑨) denotes
a vector formed with the diagonal entries of matrix 𝑨. 𝔼

[
.
]

denotes expectation operation.

II. SYSTEM MODEL

Consider a MIMO wiretap channel which consists of a
source 𝑆, an intended destination 𝐷, and 𝐽 eavesdroppers
{𝐸1,𝐸2, ⋅ ⋅ ⋅ ,𝐸𝐽}. The system model is shown in Fig. 1.
Source 𝑆 has 𝑁𝑆 transmit antennas, destination 𝐷 has 𝑁𝐷

receive antennas, and each eavesdropper 𝐸𝑗 has 𝑁𝐸𝑗
receive

antennas. The communication between source 𝑆 and destina-
tion 𝐷 happens in 𝑛 channel uses. The complex fading channel
gain matrix between 𝑆 to 𝐷 is denoted by 𝑯 ∈ ℂ𝑁𝐷×𝑁𝑆 .
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Fig. 1. System model.

Likewise, the channel gain matrix between 𝑆 to 𝐸𝑗 is denoted
by 𝒁𝑗 ∈ ℂ𝑁𝐸𝑗

×𝑁𝑆 . We assume that the channel gain matrix,
𝑯 , between 𝑆 to 𝐷 is known perfectly and remains static
over the codeword transmit duration. We also assume that
the channel gains of all 𝐸𝑗s are unknown and undergo
independent fast fading [1,6]. Channel gains of 𝐸𝑗 are i.i.d.
∼ 𝒞𝒩 (0,𝜎2

𝐸𝑗
). Let 𝑃0 denote the total available transmit

power. The source 𝑆 transmits message 𝑊 which is equiprob-
able over {1, 2, ⋅ ⋅ ⋅ , 2𝑛𝑅𝑠} with perfect secrecy with respect
to all 𝐸𝑗s [5]. Source maps each 𝑊 to a codeword {𝒙𝑖}𝑛𝑖=1 of
length 𝑛, where each 𝒙𝑖 ∈ ℂ𝑁𝑆×1 is i.i.d. (∼ 𝒞𝒩 (0,𝑸)) with
𝔼[𝒙𝑖] = 0, 𝔼[𝒙𝑖𝒙

∗
𝑖 ] = 𝑸, and 𝑡𝑟𝑎𝑐𝑒(𝑸) ≤ 𝑃0. Hereafter, we

will use 𝒙 to denote the symbols in the codeword {𝒙𝑖}𝑛𝑖=1. Let
𝒚𝐷 ∈ ℂ𝑁𝐷×1 and 𝒚𝐸𝑗

∈ ℂ𝑁𝐸𝑗
×1 denote the received signals

at the destination 𝐷 and the 𝑗th eavesdropper 𝐸𝑗 , respectively.
We then have

𝒚𝐷 = 𝑯𝒙 + 𝜼𝐷, (1)

𝒚𝐸𝑗
= 𝒁𝑗𝒙 + 𝜼𝐸𝑗

, (2)

where 𝜼𝐷 ∼ 𝒞𝒩 (0,𝑁0𝑰) and 𝜼𝐸𝑗
∼ 𝒞𝒩 (0,𝑁0𝑰) are the

i.i.d. noise vectors at 𝐷 and 𝐸𝑗 , respectively.

III. MIMO WIRETAP CHANNEL WITH GAUSSIAN INPUT

For a given 𝑯 , using (1), the information rate at the
destination 𝐷 is

𝐼(𝒙; 𝒚𝐷) = log2 det
(
𝑰 +

𝑯𝑸𝑯∗

𝑁0

)
. (3)

Similarly, for a given 𝒁𝑗 , using (2), the information rate at
the 𝑗th eavesdropper 𝐸𝑗 , ∀𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝐽, is

𝐼(𝒙; 𝒚𝐸𝑗
) = log2 det

(
𝑰 +

𝒁𝑗𝑸𝒁∗
𝑗

𝑁0

)
. (4)

Subject to the total power constraint 𝑃0, using (3) and (4), the
secrecy rate 𝑅𝑠 for the MIMO wiretap channel is obtained by
solving the following optimization problem:

𝑅𝑠 = max
𝑸

min
𝑗:1,2,⋅⋅⋅ ,𝐽

{
log2 det

(
𝑰 +

𝑯𝑸𝑯∗

𝑁0

)

−𝔼
[
log2 det

(
𝑰 +

𝒁𝑗𝑸𝒁∗
𝑗

𝑁0

)]}
(5)

≥ max
𝑸

min
𝑗:1,2,⋅⋅⋅ ,𝐽

{
log2 det

(
𝑰 +

𝑯𝑸𝑯∗

𝑁0

)

− log2 det
(
𝑰 +

𝑁𝐸𝑗
𝜎2
𝐸𝑗

𝑸

𝑁0

)}
(6)

= max
𝑸

{
log2 det

(
𝑰 +

𝑯𝑸𝑯∗

𝑁0

)

− log2 det
(
𝑰 +

𝑁𝐸𝑗0
𝜎2
𝐸𝑗0

𝑸

𝑁0

)}
(7)

= max
𝑸

{
log2 det

(
𝑰 +

𝑯𝑸𝑯∗

𝑁0

)

− log2 det
(
𝑰 +

𝒁𝑸𝒁∗

𝑁0

)}
(8)

s.t. 𝑸 ર 0, 𝑡𝑟𝑎𝑐𝑒(𝑸) ≤ 𝑃0, (9)

where (6) is written using Jensen’s inequality, 𝑗0 in (7)
corresponds to the eavesdropper with maximum 𝑁𝐸𝑗0

𝜎2
𝐸𝑗0

,

and 𝒁 in (8) is
√
𝑁𝐸𝑗0

𝜎2
𝐸𝑗0

𝑰 . We intend to find the 𝑸

which maximizes the objective function in (8) subject to the
constraints in (9). To do this, we take the GSVD [14] of 𝑯
and 𝒁 as

𝑯 = 𝑼Λ𝑯

[
Φ∗𝑻 , 0

]
𝑾 ∗ (10)

𝒁 = 𝑽 Λ𝒁

[
Φ∗𝑻 , 0

]
𝑾 ∗. (11)

𝑼 , 𝑽 , Φ, and 𝑾 are unitary matrices of dimensions 𝑁𝐷 ×
𝑁𝐷, 𝑁𝑆 × 𝑁𝑆 , 𝑘 × 𝑘, and 𝑁𝑆 × 𝑁𝑆 , respectively. 𝑻 is an
upper triangular matrix of size 𝑘 × 𝑘 and rank-𝑘. Λ𝑯 and
Λ𝒁 are diagonal matrices of dimensions 𝑁𝐷×𝑘 and 𝑁𝑆×𝑘,
respectively, and satisfy the condition

Λ𝑇
𝑯Λ𝑯 + Λ𝑇

𝒁Λ𝒁 = 𝑰. (12)

Substituting the GSVD of 𝑯 and 𝒁 in (8), we write the
problem as

max
𝑸

{

log2 det

(
𝑰 +

𝑼Λ𝑯

[
Φ∗𝑻 , 0

]
𝑾 ∗𝑸𝑾

[
Φ∗𝑻 , 0

]∗
Λ𝑇

𝑯𝑼∗

𝑁0

)

− log2 det

(
𝑰 +

𝑽 Λ𝒁

[
Φ∗𝑻 ,0

]
𝑾 ∗𝑸𝑾

[
Φ∗𝑻 ,0

]∗
Λ𝑇

𝒁𝑽 ∗

𝑁0

)}
(13)

s.t. 𝑸 ર 0, 𝑡𝑟𝑎𝑐𝑒(𝑸) ≤ 𝑃0. (14)

We perform the following sequence of substitutions in (13):
1) 𝑸 = 𝑾𝑸1𝑾

∗ ર 0 and 𝑸1 ∈ ℂ𝑁𝑆×𝑁𝑆 ,
2) 𝑸1 =

[
𝑸2,0; 0,0

]
ર 0 and 𝑸2 ∈ ℂ𝑘×𝑘,

3) 𝑸2 = (Φ∗𝑻 )−1𝑸3

(
(Φ∗𝑻 )−1

)∗
ર 0 and 𝑸3 ∈ ℂ𝑘×𝑘.

With the above substitutions, (13) and (14) can be written in
the following equivalent form:

max
𝑸, 𝑸1, 𝑸2, 𝑸3

{
log2 det

(
𝑰 +

Λ𝑯𝑸3Λ
𝑇
𝑯

𝑁0

)

− log2 det
(
𝑰 +

Λ𝒁𝑸3Λ
𝑇
𝒁

𝑁0

)}
(15)



s.t. 𝑡𝑟𝑎𝑐𝑒(𝑸) ≤ 𝑃0, 𝑸 = 𝑾𝑸1𝑾
∗,

𝑸1 =
[
𝑸2,0; 0,0

]
, 𝑸2 = (Φ∗𝑻 )−1𝑸3

(
(Φ∗𝑻 )−1

)∗
,

𝑸3 ર 0. (16)

Let there be 𝑟 non-zero diagonal entries in Λ𝑯 . Since Λ𝑯 is
a diagonal matrix, the first term in the objective function in
(15) will be maximized if 𝑸3 is selected to be of the following
form:

𝑸3 =
[
𝑸4,0; 0,0

]
ર 0, (17)

where 𝑸4 ર 0 and 𝑸4 ∈ ℂ𝑟×𝑟. In order to simplify the
analysis further, we assume that 𝑸4 is a diagonal matrix with
𝑸4 = 𝑑𝑖𝑎𝑔

(
[𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑟]𝑇

)
. Substituting (17) in (15) and

(16), we can write

max
𝑸, 𝑸

1
, 𝑸

2
, 𝑸

3
, 𝑸

4
,

𝑞1,𝑞2,⋅⋅⋅ ,𝑞𝑟

{
log2 det

(
𝑰 +

Λ𝑟×𝑟
𝑯 𝑸4Λ

𝑟×𝑟𝑇
𝑯

𝑁0

)

− log2 det
(
𝑰 +

Λ𝑟×𝑟
𝒁 𝑸4Λ

𝑟×𝑟𝑇
𝒁

𝑁0

) }
(18)

s.t. 𝑡𝑟𝑎𝑐𝑒(𝑸) ≤ 𝑃0, 𝑸 = 𝑾𝑸1𝑾
∗,

𝑸1 =
[
𝑸2,0; 0,0

]
, 𝑸2 = (Φ∗𝑻 )−1𝑸3

(
(Φ∗𝑻 )−1

)∗
,

𝑸3 =
[
𝑸4,0; 0,0

]
, 𝑸4 = 𝑑𝑖𝑎𝑔

(
[𝑞1, ⋅ ⋅ ⋅ , 𝑞𝑟]𝑇

)
ર 0, (19)

where Λ𝑟×𝑟
𝑯 = 𝑑𝑖𝑎𝑔

(
[𝜆𝐻1 ,𝜆𝐻2 , ⋅ ⋅ ⋅ ,𝜆𝐻𝑟 ]𝑇

)
and Λ𝑟×𝑟

𝒁 =
𝑑𝑖𝑎𝑔

(
[𝜆𝑍1 ,𝜆

𝑍
2 , ⋅ ⋅ ⋅ ,𝜆𝑍𝑟 ]𝑇

)
are leading 𝑟× 𝑟 diagonal matrices

of Λ𝑯 and Λ𝒁 , respectively.
Rewrite the objective function in (18) in the following

equivalent form:

max
𝑸, 𝑸

1
, 𝑸

2
, 𝑸

3
, 𝑸

4
,

𝑞1,𝑞2,⋅⋅⋅ ,𝑞𝑟

𝑟∑

𝑖=1

{
log2

(
1 +

(𝜆𝐻𝑖 )2𝑞𝑖
𝑁0

)

− log2

(
1 +

(𝜆𝑍𝑖 )
2𝑞𝑖

𝑁0

)}
(20)

s.t. all constraints in (19).

We note that for 𝜆𝐻𝑖 > 𝜆𝑍𝑖 , the function
{
log2

(
1 +

(𝜆𝐻
𝑖 )2𝑞𝑖
𝑁0

)
− log2

(
1 +

(𝜆𝑍
𝑖 )2𝑞𝑖
𝑁0

)}
in (20) is positive, strictly

increasing, and concave in the variable 𝑞𝑖 > 0. Let 𝑙 ≤ 𝑟
be the number of 𝜆𝐻𝑖 s which are strictly greater than 𝜆𝑍𝑖 s. We
keep the 𝑙 terms in the summation in (20) for which 𝜆𝐻𝑖 > 𝜆𝑍𝑖
and remaining 𝑟−𝑙 terms are discarded since they will not lead
to positive secrecy rate. With this, the optimization problem
(20) is written as follows:

max
𝑸, 𝑸

1
, 𝑸

2
, 𝑸

3
, 𝑸

4
,

𝑞1,𝑞2,⋅⋅⋅ ,𝑞𝑙

𝑙∑

𝑖=1

{
log2

(
1 +

(𝜆𝐻𝑖 )2𝑞𝑖
𝑁0

)

− log2

(
1 +

(𝜆𝑍𝑖 )
2𝑞𝑖

𝑁0

)}
(21)

s.t. 𝑡𝑟𝑎𝑐𝑒(𝑸) ≤ 𝑃0, 𝑸 = 𝑾𝑸1𝑾
∗,

𝑸1 = [𝑸2,0; 0,0], 𝑸2 = (Φ∗𝑻 )−1𝑸3

(
(Φ∗𝑻 )−1

)∗
,

𝑸3 = [𝑸4,0; 0,0],

𝑸4 = 𝑑𝑖𝑎𝑔([𝑞1, ⋅ ⋅ ⋅ , 𝑞𝑙, 0, ⋅ ⋅ ⋅ , 0]𝑇 ) ર 0. (22)

The objective function in (21) is a sum of 𝑙 concave functions
and all the constraints in (22) are linear. The above optimiza-
tion problem is a concave maximization problem and it can
be solved using interior-point method. We denote the optimum
values of 𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑙 obtained from (21) as 𝑞𝑔1 , 𝑞

𝑔
2 , ⋅ ⋅ ⋅ , 𝑞𝑔𝑙 ,

respectively.
Remarks :

∙ A possible suboptimal approach to solve the optimization
problem (21) will be to assign equal weights to all
𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑙, i.e., 𝑞1 = 𝑞2 = ⋅ ⋅ ⋅ = 𝑞𝑙, and solve the
following optimization problem:

max
𝑸, 𝑸

1
, 𝑸

2
, 𝑸

3
, 𝑸

4
,

𝑞1,𝑞2,⋅⋅⋅ ,𝑞𝑙

𝑡𝑟𝑎𝑐𝑒(𝑸)

s.t. 𝑡𝑟𝑎𝑐𝑒(𝑸) ≤ 𝑃0, 𝑸 = 𝑾𝑸1𝑾
∗,

𝑸1 = [𝑸2,0; 0,0], 𝑸2 = (Φ∗𝑻 )−1𝑸3

(
(Φ∗𝑻 )−1

)∗
,

𝑸3 = [𝑸4,0; 0,0],

𝑸4 = 𝑑𝑖𝑎𝑔([𝑞1, ⋅ ⋅ ⋅ , 𝑞𝑙, 0, ⋅ ⋅ ⋅ , 0]𝑇 ) ર 0,

𝑞1 = 𝑞2 = ⋅ ⋅ ⋅ = 𝑞𝑙.

∙ We note that the MIMO wiretap problem in (21)
with the total available transmit power constraint,
𝑡𝑟𝑎𝑐𝑒(𝑸) ≤ 𝑃0, in (22) can also be extended to
the scenario when there is an individual power con-
straint on 𝑸, i.e., 𝑑𝑖𝑎𝑔(𝑸) ≤ [𝑃1,𝑃2, ⋅ ⋅ ⋅ ,𝑃𝑁𝑆

]𝑇 , where
𝑃1,𝑃2, ⋅ ⋅ ⋅ ,𝑃𝑁𝑆

are the available transmit powers for
antennas 1, 2, ⋅ ⋅ ⋅ ,𝑁𝑠, respectively.

IV. MIMO WIRETAP CHANNEL WITH FINITE-ALPHABET

INPUT

The optimization problem (21) can be equivalently viewed
as the sum secrecy rate of 𝑙 scalar Gaussian wiretap channels

with power constraints in (22).
√

(𝜆𝐻
𝑖
)2𝑞𝑖

𝑁0
and

√
(𝜆𝑍

𝑖
)2𝑞𝑖

𝑁0
corre-

spond to the destination and eavesdropper channel coefficients,
respectively, associated with the 𝑖th Gaussian wiretap channel
where 1 ≤ 𝑖 ≤ 𝑙 and noise ∼ 𝒞𝒩 (0, 1). In this section, we
consider the power allocation scheme for the above channel
model when the input to each scalar wiretap channel is from
a finite alphabet set 𝔸 = {𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑀} of size 𝑀 . We
assume that symbols from the set 𝔸 are drawn equiprobably
and 𝔼{∣𝑎∣2} = 1. With finite-alphabet input, we write the
optimization problem (21) as follows:

max
𝑸, 𝑸

1
, 𝑸

2
, 𝑸

3
, 𝑸

4
,

𝑞1,𝑞2,⋅⋅⋅ ,𝑞𝑙

𝑙∑

𝑖=1

{
𝐼
( (𝜆𝐻𝑖 )2𝑞𝑖

𝑁0

)
− 𝐼

( (𝜆𝑍𝑖 )2𝑞𝑖
𝑁0

)}
(23)

s.t. all constraints in (22).
𝐼(.) in (23) is the mutual information function with finite-
alphabet input and it is explicitly written as follows:

𝐼(𝜌) =
1

𝑀

𝑀∑

𝑖=1

∫
𝑝𝑛

(
𝑧 −√

𝜌𝑎𝑖
)

. log2
𝑝𝑛(𝑧 −√

𝜌𝑎𝑖)

1
𝑀

𝑀∑
𝑚=1

𝑝𝑛(𝑧 −√
𝜌𝑎𝑚)

𝑑𝑧 , (24)



where 𝑝𝑛(𝜃) = 1
𝜋 𝑒

−∣𝜃∣2 . Solving the optimization problem
(23) for optimum 𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑙 is hard. A suboptimal approach
to find the secrecy rate with finite-alphabet input will be to
use 𝑞𝑔1 , 𝑞

𝑔
2 , ⋅ ⋅ ⋅ , 𝑞𝑔𝑙 directly in (23) obtained from (21) with

Gaussian input. This suboptimal approach to find the secrecy
rate with finite-alphabet input could be adverse and it could
lead to reduced secrecy rate without transmit power control.
In the Appendix, we show that the secrecy rate with finite-
alphabet input for a Gaussian wiretap channel is a unimodal
function in transmit power, i.e., there exists a unique transmit
power at which the secrecy rate attains its maximum value.

Let 𝑞𝑢𝑙1 , 𝑞𝑢𝑙2 , ⋅ ⋅ ⋅ , 𝑞𝑢𝑙𝑙 be the upper limit for 𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑙
obtained using the method proposed in the Appendix. Using
these upper limits 𝑞𝑢𝑙1 , 𝑞𝑢𝑙2 , ⋅ ⋅ ⋅ , 𝑞𝑢𝑙𝑙 , we rewrite the optimiza-
tion problem (21) as follows:

max
𝑸, 𝑸

1
, 𝑸

2
, 𝑸

3
, 𝑸

4
,

𝑞1,𝑞2,⋅⋅⋅ ,𝑞𝑙

𝑙∑

𝑖=1

{
log2

(
1 +

(𝜆𝐻𝑖 )2𝑞𝑖
𝑁0

)

− log2

(
1 +

(𝜆𝑍𝑖 )
2𝑞𝑖

𝑁0

)}
(25)

s.t. 𝑡𝑟𝑎𝑐𝑒(𝑸) ≤ 𝑃0, 𝑸 = 𝑾𝑸1𝑾
∗,

𝑸1 = [𝑸2,0; 0,0], 𝑸2 = (Φ∗𝑻 )−1𝑸3

(
(Φ∗𝑻 )−1

)∗
,

𝑸3 = [𝑸4,0; 0,0],

𝑸4 = 𝑑𝑖𝑎𝑔([𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑙, 0, ⋅ ⋅ ⋅ , 0]𝑇 ) ર 0,

[𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑙]𝑇 ≤ [𝑞𝑢𝑙1 , 𝑞𝑢𝑙2 , ⋅ ⋅ ⋅ , 𝑞𝑢𝑙𝑙 ]𝑇 . (26)

We denote the optimum solution of (25) as 𝑞𝑓1 , 𝑞
𝑓
2 , ⋅ ⋅ ⋅ , 𝑞𝑓𝑙 .

If 𝑞𝑓1 , 𝑞
𝑓
2 , ⋅ ⋅ ⋅ , 𝑞𝑓𝑙 are used in (23) to compute the secrecy

rate with finite-alphabet input, it will not lead to reduced
secrecy rate due to the presence of additional constraint
[𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑙]𝑇 ≤ [𝑞𝑢𝑙1 , 𝑞𝑢𝑙2 , ⋅ ⋅ ⋅ , 𝑞𝑢𝑙𝑙 ]𝑇 in (26). We will see
this in the numerical results presented in the next section.

V. RESULTS AND DISCUSSIONS

We computed the secrecy rate for MIMO wiretap channel
with 𝑁𝑆 = 𝑁𝐷 = 𝑁𝐸𝑗

= 3 (i.e., source, destination and
eavesdroppers have 3 antennas each) by simulations. We take
𝑁0 = 1, 𝜎𝐸𝑗0

= 0.5, and

𝑯 =

[
0.0799− 0.1191𝑖, 1.9709 + 0.2753𝑖, −0.8066 + 0.8648𝑖
0.3111− 0.1545𝑖, −0.8250 + 0.5312𝑖, −0.7731− 0.9074𝑖
0.0719 + 0.3828𝑖, −1.3112 + 1.2574𝑖, −0.3066− 1.6468𝑖

]
.

We computed the secrecy rate for three different cases:

∙ Case 1: The secrecy rate is computed with Gaussian
input.

∙ Case 2: The secrecy rate is computed with binary al-
phabet (BPSK) input but with no power control, i.e., the
solution obtained directly from (21) is used to compute
the finite-alphabet secrecy rate in (23).

∙ Case 3: The secrecy rate is computed with binary alpha-
bet (BPSK) input but with power control, i.e., the solution
obtained from (25) is used to compute the finite-alphabet
secrecy rate in (23).
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Fig. 2. Secrecy rate vs total power in MIMO wiretap channel with known
destination CSI and unknown (statistical) eavesdroppers CSI. 𝑁𝑆 = 𝑁𝐷 =
𝑁𝐸𝑗

= 3, 𝑁0 = 1, 𝜎𝐸𝑗0
= 0.5.

The computed secrecy rate results for the above three cases
are shown in Fig. 2. From Fig. 2, it can be seen that, as
expected, the secrecy rate for MIMO wiretap channel with
Gaussian alphabet input (Case 1) increases with increase in
𝑃0. The secrecy rate with BPSK input but with no power
control (Case 2) first increases with increase in 𝑃0 and then
decreases to zero at high transmit powers. This is due to the
fact that at high transmit powers with finite-alphabet input, the
information rate at the eavesdroppers equals the information
rate at the destination which causes the secrecy rate go to
zero. However, when the power allocation scheme proposed
in Section IV is used, the MIMO wiretap secrecy rate with
BPSK input (Case 3) does not go to zero at high transmit
powers (as was observed in Case 2). Instead, the secrecy rate
increases with increasing transmit power and remains flat at
some non-zero secrecy rate at high transmit powers. This is
because of the presence of the additional power constraint
[𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑙]𝑇 ≤ [𝑞𝑢𝑙1 , 𝑞𝑢𝑙2 , ⋅ ⋅ ⋅ , 𝑞𝑢𝑙𝑙 ]𝑇 , in (26).

VI. CONCLUSIONS

We studied the problem of power allocation for secrecy in
MIMO wiretap channel with finite-alphabet input. Our work
differed from past works in the following aspects: we assumed
that only the statistical knowledge of the eavesdropper CSI is
known, and we considered multiple eavesdroppers. To study
the problem, we first considered the MIMO wiretap channel
with Gaussian input, where we transformed the secrecy rate
max-min optimization problem to a concave maximization
problem which maximized the sum secrecy rate of 𝑙 scalar
wiretap channels subject to linear constraints on the trans-
mit covariance matrix. When the transmit covariance matrix
obtained in the Gaussian input setting is used in the finite-
alphabet input setting, the secrecy rate decreased for increasing
transmit powers leading to zero secrecy rate at high transmit



powers. To alleviate this secrecy rate loss, we proposed a
power allocation scheme using an additional power constraint
in the problem. The proposed power allocation scheme was
shown to alleviate the secrecy rate loss problem and achieve
flat non-zero secrecy rate at high transmit powers.

APPENDIX

In this appendix, we show that the secrecy rate with finite-
alphabet input for a Gaussian wiretap channel is a unimodal
function in transmit power, i.e., there exists a unique transmit
power at which secrecy rate attains its maximum value. Let
𝑦𝐷 and 𝑦𝐸 be the received signals at the destination and
eavesdropper, respectively, in a Gaussian wiretap channel, i.e.,

𝑦𝐷 =
√
𝑃ℎ𝑥+ 𝜂𝐷 (27)

𝑦𝐸 =
√
𝑃𝑧𝑥+ 𝜂𝐸 , (28)

where ℎ and 𝑧 are known channel coefficients for the desti-
nation and eavesdropper channels, respectively, 𝑥 is the trans-
mitted source symbol from a finite-alphabet set 𝔸 as described
in Section IV with 𝔼{∣𝑥∣2} = 1, 𝑃 is the power transmitted
by the source, and 𝜂𝐷 and 𝜂𝐸 are the independent additive
noise terms at the destination and eavesdropper ∼ 𝒞𝒩 (0, 1).

Using (27), the information rate at the destination, 𝑅𝑓
𝐷, with

finite-alphabet input is

𝑅𝑓
𝐷 = 𝐼(∣ℎ∣2𝑃 ). (29)

Similarly, using (28), the information rate at the eavesdropper,
𝑅𝑓
𝐸 , with finite-alphabet input is

𝑅𝑓
𝐸 = 𝐼(∣𝑧∣2𝑃 ). (30)

𝐼(.) in (29) and (30) is the mutual information function as
defined in (24). The secrecy rate, 𝑅𝑓

𝑠 , with finite-alphabet input
for the Gaussian wiretap channel is obtained as

𝑅𝑓
𝑠 = 𝑅𝑓

𝐷 −𝑅𝑓
𝐸 = 𝐼(∣ℎ∣2𝑃 )− 𝐼(∣𝑧∣2𝑃 ). (31)

With 𝑃 > 0, 𝑅𝑓
𝑠 in (31) will be positive only when ∣ℎ∣ > ∣𝑧∣.

Therefore, w.l.o.g. we assume that ∣ℎ∣ > ∣𝑧∣. Using Theorem
1 in [15] to find the derivatives of 𝑅𝑓

𝐷 and 𝑅𝑓
𝐸 w. r. t. 𝑃 ,

respectively, we get

𝑑𝑅𝑓
𝐷

𝑑𝑃
= ∣ℎ∣2MMSE

(
∣ℎ∣2𝑃

)
log2 𝑒 (32)

𝑑𝑅𝑓
𝐸

𝑑𝑃
= ∣𝑧∣2MMSE

(
∣𝑧∣2𝑃

)
log2 𝑒. (33)

Using (32) and (33), taking the derivative of 𝑅𝑓
𝑠 w.r.t. 𝑃 and

equating it to zero, we get

𝑑𝑅𝑓
𝑠

𝑑𝑃
=

(
∣ℎ∣2MMSE

(
∣ℎ∣2𝑃

)
− ∣𝑧∣2MMSE

(
∣𝑧∣2𝑃

))
log2 𝑒

= 0. (34)

We intend to seek the solution, 𝑃 = 𝑃𝑜𝑝𝑡, of (34). We show
that, with finite alphabet, this solution is unique and secrecy
rate, 𝑅𝑓

𝑠 , attains it’s maximum value at 𝑃 = 𝑃𝑜𝑝𝑡.
For various 𝑀 -ary alphabets, it is shown in [15,16] that 1)

MMSE is a positive, strictly monotonic decreasing function in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

β

 

 

1. Gaussian MMSE

2. Exponential MMSE

3. BPSK MMSE

4. Line β = (|h|2/|z|2) α

5. Line β = α

2
3

1

4

5

≡
(αopt, βopt)

Popt

P → ∞

P = 0

Fig. 3. Various MMSE 𝛽 vs 𝛼 curves with ∣ℎ∣2 = 2.0 and ∣𝑧∣2 = 0.5.

SNR and in the limit approaches zero as SNR tends to infinity,
and 2) at high SNRs, MMSE decreases exponentially (Theo-
rems 3 and 4 in [15]). Since MMSE is a strictly monotonic
decreasing function, it’s inverse, MMSE−1, exists. Define

𝛼 = MMSE(∣ℎ∣2𝑃 ) =⇒ 𝑃 =
1

∣ℎ∣2 MMSE−1(𝛼), (35)

and 𝛽 = MMSE(∣𝑧∣2𝑃 ). (36)

Using (35), we rewrite (36) in terms of 𝛼 as

𝛽 = MMSE(∣𝑧∣2𝑃 ) = MMSE
( ∣𝑧∣2
∣ℎ∣2 MMSE−1(𝛼)

)
. (37)

It can be easily shown that 𝛽 is a strictly monotonic increasing
function in 𝛼. We plot 𝛽 as a function of 𝛼 for three different
MMSE functions and two straight lines in Fig. 3. Point (𝛼,𝛽) =
(0, 0) ≡ 𝑂 in the plot corresponds to 𝑃 → ∞. Similarly, point
(𝛼,𝛽) = (1, 1) corresponds to 𝑃 = 0.

1) Gaussian MMSE Function: We take MMSE(∣ℎ∣2𝑃 ) =
1

(1+∣ℎ∣2𝑃 ) = 𝛼 and MMSE(∣𝑧∣2𝑃 ) = 1
(1+∣𝑧∣2𝑃 ) = 𝛽. With this

choice of MMSE functions, 𝛽 = 1(
1+

∣𝑧∣2
∣ℎ∣2 ( 1

𝛼 − 1)
) . The slope

of this curve at the origin, (0, 0), is

𝑑𝛽

𝑑𝛼
at (𝛼 = 0) =

𝑑𝛽
𝑑𝑃
𝑑𝛼
𝑑𝑃

as (𝑃 → ∞) =
∣ℎ∣2
∣𝑧∣2 .

This implies that 𝛽 =
( ∣ℎ∣2
∣𝑧∣2

)
𝛼 is tangent to the Gaussian MMSE

𝛽 vs 𝛼 curve at the origin (0, 0).

2) Exponential MMSE Function: We take
MMSE(∣ℎ∣2𝑃 ) = exp−(∣ℎ∣2𝑃 ) = 𝛼, and MMSE(∣𝑧∣2𝑃 ) =
exp−(∣𝑧∣2𝑃 ) = 𝛽. With this choice of MMSE functions,

𝛽 = 𝛼
(
∣𝑧∣2
∣ℎ∣2 )

. The 𝛽 axis, i.e., 𝛼 = 0, is tangent to the
exponential MMSE 𝛽 vs 𝛼 curve at the origin (0, 0).

3) 𝑀 -ary MMSE Functions: At high SNRs, MMSE for 𝑀 -
ary alphabets decreases exponentially (Theorems 3 and 4 in



[15]). This implies that the 𝛽 axis, i.e., 𝛼 = 0, is tangent to
the 𝑀 -ary MMSE 𝛽 vs 𝛼 curve at the origin (0, 0).

4) Straight Line: 𝛽 =
( ∣ℎ∣2
∣𝑧∣2

)
𝛼.

5) Straight Line: 𝛽 = 𝛼.

Since the 𝛽 axis, i.e., 𝛼 = 0, is a tangent to exponential
MMSE 𝛽 vs 𝛼 curve at the origin (0, 0), the exponential MMSE

𝛽 vs 𝛼 curve will always intersect with the 𝛽 =
( ∣ℎ∣2
∣𝑧∣2

)
𝛼 line

at a point other than (0, 0). This implies that for exponential
MMSE function, there exists a 𝑃 = 𝑃𝑜𝑝𝑡 which makes (34)
zero. Uniqueness of 𝑃𝑜𝑝𝑡 can be confirmed by substituting
exponential MMSE function directly in (34). Also, since ∣ℎ∣ >
∣𝑧∣ ≥ 0, 𝑅𝑓

𝑠 will attain it’s maximum value at 𝑃 = 𝑃𝑜𝑝𝑡.
When the MMSE function is Gaussian, the Gaussian MMSE

𝛽 vs 𝛼 curve, 𝛽 = 1(
1+

∣𝑧∣2
∣ℎ∣2 ( 1

𝛼−1)
) , does not intersect with

𝛽 =
( ∣ℎ∣2
∣𝑧∣2

)
𝛼 line at any other point other than (0, 0). In

fact, the 𝛽 =
( ∣ℎ∣2
∣𝑧∣2

)
𝛼 line is tangent to the Gaussian MMSE

𝛽 vs 𝛼 curve at (0, 0). This implies that for Gaussian MMSE,
there is no 𝑃 = 𝑃𝑜𝑝𝑡 which makes (34) zero. This fact can
also be confirmed by substituting the Gaussian MMSE function
directly in (34).

The MMSE function of 𝑀 -ary alphabets at high SNRs de-
creases exponentially, which means 𝛽 axis, i.e., 𝛼 = 0, is
tangent to 𝑀 -ary MMSE 𝛽 vs 𝛼 curve at the origin (0, 0). This
implies that 𝑀 -ary MMSE 𝛽 vs 𝛼 curve will always intersect
with 𝛽 =

( ∣ℎ∣2
∣𝑧∣2

)
𝛼 line at a point other than (0, 0). This

shows that for 𝑀 -ary MMSE function, there exists a 𝑃 = 𝑃𝑜𝑝𝑡
which makes (34) zero. To prove the uniqueness of 𝑃𝑜𝑝𝑡, let
∣ℎ∣2MMSE

(
∣ℎ∣2𝑃

)
and ∣𝑧∣2MMSE

(
∣𝑧∣2𝑃

)
in (34) intersect for the

first time at 𝑃 = 𝑃𝑜𝑝𝑡 from 𝑃 = 0. Since ∣ℎ∣ > ∣𝑧∣ ≥ 0,
this implies that ∣ℎ∣2MMSE

(
∣ℎ∣2𝑃

)
> ∣𝑧∣2MMSE

(
∣𝑧∣2𝑃

)
for all

𝑃 < 𝑃𝑜𝑝𝑡 and ∣ℎ∣2MMSE
(
∣ℎ∣2𝑃

)
< ∣𝑧∣2MMSE

(
∣𝑧∣2𝑃

)
in some

neighborhood of 𝑃 > 𝑃𝑜𝑝𝑡. Monotonicity of MMSE [16]
implies that ∣ℎ∣2MMSE

(
∣ℎ∣2𝑃

)
and ∣𝑧∣2MMSE

(
∣𝑧∣2𝑃

)
will not

intersect for any finite 𝑃 > 𝑃𝑜𝑝𝑡. This can be seen in Fig. 4
also. This proves the uniqueness of 𝑃𝑜𝑝𝑡. The above analysis
also implies that at 𝑃 = 𝑃𝑜𝑝𝑡 the secrecy rate 𝑅𝑓

𝑠 will attain
its maximum value.

A. Numerical computation of 𝑃𝑜𝑝𝑡
We can find 𝑃𝑜𝑝𝑡 of (34) for 𝑀 -ary MMSE functions using

gradient based method as follows.

Step 1 : Let 𝑃𝑜𝑝𝑡 lie in the interval [𝑃𝑙𝑙, 𝑃𝑢𝑙], 𝑃𝑙𝑙 ≥ 0,
𝑃𝑢𝑙 ≤ 𝑃. Let 𝜖 be a small positive number.

Step 2 : 𝑃𝑜𝑝𝑡 = (𝑃𝑙𝑙 + 𝑃𝑢𝑙)/2. Compute 𝑑𝑅𝑓
𝑠

𝑑𝑃 using (34)
at 𝑃𝑜𝑝𝑡.

Step 3 : If 𝑑𝑅𝑓
𝑠

𝑑𝑃 ≥ 0, then 𝑃𝑙𝑙 = 𝑃𝑜𝑝𝑡; else 𝑃𝑢𝑙 = 𝑃𝑜𝑝𝑡.

Repeat Step 2 and Step 3 until 𝑃𝑢𝑙 − 𝑃𝑙𝑙 ≤ 𝛿, where 𝛿
is a small positive number.
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