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Abstract—In this paper, we study sum secrecy rate in multi-
carrier decode-and-forward relay beamforming. We obtain the
optimal source power and relay weights on each subcarrier
which maximize the sum secrecy rate. For a given total power
on a given subcarrier 𝑘, 𝑃 𝑘

0 , we reformulate the optimization
problem by relaxing the rank-1 constraint on the complex positive
semidefinite relay weight matrix, and solve using semidefinite
programming. We analytically prove that the solution to the
relaxed optimization problem is indeed rank 1. We show that
the subcarrier secrecy rate, 𝑅𝑠(𝑃

𝑘
0 ), is a concave function in

total power 𝑃 𝑘
0 if 𝑅𝑠(𝑃

𝑘
0 ) > 0 for any 𝑃 𝑘

0 > 0. Numerical
results show that the sum secrecy rate with optimal power
allocation across subcarriers is more than the sum secrecy rate
with equal power allocation. We also propose a low complexity
suboptimal power allocation scheme which outperforms equal
power allocation scheme.

keywords: Cooperative relaying, physical layer security, sum secrecy

rate, multicarrier, multiple eavesdroppers, semi-definite programming.

I. INTRODUCTION

Wireless networks are vulnerable to eavesdropping because
of the broadcast nature of wireless channels. Secure wireless
communication in the presence of eavesdroppers is a topic
of current interest. Traditional methods handle security using
encryption methods at the application layer. An alternate
approach is physical layer security, which aims to provide
security through physical layer mechanisms by which the
intended receiver gets the information reliably while the eaves-
droppers get no information [1]–[4]. Achievable secrecy rates
and secrecy capacity bounds in single and multiple antenna
point-to-point wireless wiretap channels have been studied in
[5]–[10], and point-to-multipoint wiretap channel has been
studied in [11]. There is growing interest in secure wireless
communications via cooperative relaying. Cooperative relays
can act as distributed antennas, and therefore can help to
improve secrecy rate using relay beamforming [12]–[16].

Several works on secrecy using cooperative relays consider
single carrier schemes. Little work has been done on secrecy
in multicarrier schemes in general, and in multicarrier schemes
with cooperative relaying in particular. For example, [17]
considers achievable secrecy rates in a wiretap OFDM channel
with no relaying. Efficient bit-loading strategies with QAM
input to minimize the secrecy rate loss with respect to the
Gaussian input have been proposed. In [18], a multicarrier
scheme for secrecy with decode-and-forward (DF) relaying has
been studied. The model in [18] used one relay and one eaves-
dropper on each subcarrier. The source and the relay operated
under a total power constraint. Optimum source and relay
powers over the subcarriers were obtained by maximizing the
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sum secrecy rate. A more general scenario will be to consider
multiple relays with multiple eavesdroppers on each subcarrier,
and to optimally allocate power between source and relays
over the subcarriers so that the sum secrecy rate is maximized
under a total power constraint. A direct extension of the
approach in [18] to multiple relays and multiple eavesdroppers
is not straightforward. In this paper, we solve the optimum
power allocation problem for multiple relays and multiple
eavesdroppers by taking a different approach, where for a
given total power on a given subcarrier 𝑘, denoted by 𝑃 𝑘

0 ,
we reformulate the optimization problem by relaxing the
rank-1 constraint on the complex positive semidefinite relay
weight matrix, and solve using semidefinite programming. We
analytically prove that the solution to the relaxed optimization
problem is indeed rank 1. We show that the subcarrier secrecy
rate, 𝑅𝑠(𝑃

𝑘
0 ), is a concave function in total power 𝑃 𝑘

0 if
𝑅𝑠(𝑃

𝑘
0 ) > 0 for any 𝑃 𝑘

0 > 0. The sum secrecy rate with
the optimal power allocation across subcarriers is shown to be
more than the sum secrecy rate with equal power allocation.
In addition, a low complexity suboptimal power allocation
scheme which outperforms equal power allocation scheme is
also proposed.
Notations : 𝑨 ∈ ℂ𝑁1×𝑁2 implies that 𝑨 is a complex

matrix of dimension 𝑁1 × 𝑁2. 𝑨 ર 0 and 𝑨 ≻ 0 denote
that 𝑨 is a positive semidefinite matrix and positive definite
matrix, respectively. 𝑰 denotes the identity matrix. Transpose
and complex conjugate transpose operations are denoted by
[.]𝑇 and [.]∗, respectively. ∣.∣ denotes absolute value.

II. SYSTEM MODEL

Consider a multicarrier decode-and-forward cooperative re-
laying scheme with 𝑀 subcarriers. The system model is
shown in Fig. 1, which consists of a source node 𝑆, 𝑁 relay
nodes {𝑅1,𝑅2, ⋅ ⋅ ⋅ ,𝑅𝑁}, an intended destination node 𝐷,
and 𝐽𝑘 eavesdropper nodes {𝐸𝑘

1 ,𝐸
𝑘
2 , ⋅ ⋅ ⋅ ,𝐸𝑘

𝐽𝑘
} on the 𝑘th

subcarrier (1 ≤ 𝑘 ≤ 𝑀), where 𝐽𝑘 can be greater than 𝑁
(i.e., more eavesdroppers than relays). In addition to the links
from relays to destination node and relays to eavesdropper
nodes, we assume direct links from source to destination node
and source to eavesdropper nodes. For the 𝑘th subcarrier, the
complex channel gains between source to relays are denoted
by 𝜸𝑘 = [𝛾𝑘

1 , 𝛾
𝑘
2 , ⋅ ⋅ ⋅ , 𝛾𝑘

𝑁 ] ∈ ℂ1×𝑁 . Likewise, the channel
gains between relays to destination and relays to the 𝑗th
eavesdropper on the 𝑘th subcarrier are denoted by 𝜶𝑘 =
[𝛼𝑘

1 ,𝛼
𝑘
2 , ⋅ ⋅ ⋅ ,𝛼𝑘

𝑁 ] ∈ ℂ1×𝑁 , and 𝜷𝑘
𝑗 = [𝛽𝑘

1𝑗 ,𝛽
𝑘
2𝑗 , ⋅ ⋅ ⋅ ,𝛽𝑘

𝑁𝑗 ] ∈
ℂ1×𝑁 , respectively, where 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝐽𝑘. The channel
gains on the direct links from source to destination and source
to 𝑗th eavesdropper on the 𝑘th subcarrier are denoted by 𝛼𝑘
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and 𝛽𝑘
0𝑗 , respectively. We assume that the eavesdroppers do

not collude [11].
Let 𝑃0 denote the total transmit power budget in the system

(i.e., source power plus relays power) and let 𝑃 𝑘
0 denote the

total available power on the 𝑘th subcarrier. The communication
between source 𝑆 and destination 𝐷 happens in two hops.
Each hop is divided into 𝑛 channel uses. In the first hop
of transmission on the 𝑘th subcarrier, 𝑆 transmits message
𝑊 𝑘 which is equiprobable over {1, 2, ⋅ ⋅ ⋅ , 22𝑛𝑅𝑠(𝑃

𝑘
0 )}. 𝑊 𝑘

needs to be conveyed to the destination at perfect secrecy
rate 𝑅𝑠(𝑃

𝑘
0 ). For each 𝑊 𝑘 drawn equiprobably over the set

{1, 2, ⋅ ⋅ ⋅ , 22𝑛𝑅𝑠(𝑃
𝑘
0 )}, 𝑆, using a stochastic encoder, maps

𝑊 𝑘 to a codeword {𝑋𝑘
𝑚}𝑛𝑚=1 of length 𝑛, where each symbol,

𝑋𝑘
𝑚, in the codeword is i.i.d. ∼ 𝒞𝒩 (0, 1). Let 𝑃 𝑘

𝑠 denote
the source transmit power on the 𝑘th subcarrier. In the 𝑚th
(1 ≤ 𝑚 ≤ 𝑛) channel use, source transmits the weighted
symbol

√
𝑃 𝑘
𝑠 𝑋

𝑘
𝑚. In the following, we will use 𝑋𝑘 to denote

the symbols in the codeword {𝑋𝑘
𝑚}𝑛𝑚=1 on the 𝑘th subcarrier.

We also assume that all the channel gains are known and
remain static over the codeword transmit duration.

In the second hop of transmission on the 𝑘th subcarrier,
relays retransmit the decoded symbol 𝑋𝑘 to the destination
𝐷. Let 𝝓𝑘 = [𝜙𝑘

1 ,𝜙
𝑘
2 , ⋅ ⋅ ⋅ ,𝜙𝑘

𝑁 ]𝑇 ∈ ℂ𝑁×1 denote the complex
weights applied by the relays on the transmit symbol 𝑋𝑘. The
𝑖th (1 ≤ 𝑖 ≤ 𝑁) relay transmits the weighted symbol 𝜙𝑘

𝑖𝑋
𝑘.

Let 𝑦𝑘𝑅𝑖
, 𝑦𝑘𝐷1

and 𝑦𝑘𝐸1𝑗
denote the received signals at the

𝑖th relay, destination 𝐷 and 𝑗th eavesdropper 𝐸𝑘
𝑗 , respectively

on the 𝑘th subcarrier, in the first hop of transmission. In the
second hop of transmission on the 𝑘th subcarrier, the received
signals at the destination and 𝑗th eavesdropper are denoted by
𝑦𝑘𝐷2

and 𝑦𝑘𝐸2𝑗
, respectively. We have

𝑦𝑘𝑅𝑖
=

√
𝑃 𝑘
𝑠 𝛾

𝑘
𝑖 𝑋

𝑘 + 𝜂𝑘𝑅𝑖
, ∀𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑁, (1)

𝑦𝑘𝐷1
=

√
𝑃 𝑘
𝑠 𝛼

𝑘
0𝑋

𝑘 + 𝜂𝑘𝐷1
, (2)

𝑦𝑘𝐸1𝑗
=

√
𝑃 𝑘
𝑠 𝛽

𝑘
0𝑗𝑋

𝑘 + 𝜂𝑘𝐸1𝑗
, 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝐽𝑘, (3)

𝑦𝑘𝐷2
= 𝜶𝑘𝝓𝑘𝑋𝑘 + 𝜂𝑘𝐷2

, (4)

𝑦𝑘𝐸2𝑗
= 𝜷𝑘

𝑗𝝓
𝑘𝑋𝑘 + 𝜂𝑘𝐸2𝑗

, 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝐽𝑘. (5)

The noise components, 𝜂’s, are assumed to be i.i.d.
𝒞𝒩 (0,𝑁0). We rewrite (2), (4) and (3), (5) in the following
vector forms:

𝒚𝑘
𝐷 = [𝑦𝑘𝐷1

, 𝑦𝑘𝐷2
]𝑇

= [
√
𝑃 𝑘
𝑠 𝛼

𝑘
0 , 𝜶𝑘𝝓𝑘]𝑇𝑋𝑘 + [𝜂𝑘𝐷1

, 𝜂𝑘𝐷2
]𝑇 , (6)

𝒚𝑘
𝐸

𝑗
= [𝑦𝑘𝐸

1𝑗
, 𝑦𝑘𝐸

2𝑗
]𝑇

= [
√
𝑃 𝑘
𝑠 𝛽

𝑘
0𝑗 , 𝜷𝑘

𝑗𝝓
𝑘]𝑇𝑋𝑘 + [𝜂𝑘𝐸1𝑗

, 𝜂𝑘𝐸2𝑗
]𝑇 . (7)

III. SUM SECRECY RATE IN MULTICARRIER DF RELAY

BEAMFORMING

Using (1), (6) and (7), the information rates at the 𝑖th relay,
destination 𝐷 and 𝑗th eavesdropper 𝐸𝑘

𝑗 , respectively, on the
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Fig. 1. System model.

𝑘th subcarrier are

𝑅𝑘
𝑅𝑖

△
=

1

2
𝐼
(
𝑋𝑘; 𝑦𝑘𝑅𝑖

)
=

1

2
log2

(
1 +

𝑃 𝑘
𝑠 ∣𝛾𝑘𝑖 ∣2
𝑁0

)
, (8)

𝑅𝑘
𝐷

△
=

1

2
𝐼
(
𝑋𝑘;𝒚𝑘

𝐷

)

=
1

2
log2

(
1 +

𝑃 𝑘
𝑠 ∣𝛼𝑘

0 ∣2 +𝜶𝑘𝝓𝑘𝝓𝑘∗𝜶𝑘∗

𝑁0

)
, (9)

𝑅𝑘
𝐸

𝑗

△
=

1

2
𝐼
(
𝑋𝑘;𝒚𝑘

𝐸𝑗

)

=
1

2
log2

(
1 +

𝑃 𝑘
𝑠 ∣𝛽𝑘

0𝑗 ∣2 + 𝜷𝑘
𝑗𝝓

𝑘𝝓𝑘∗𝜷𝑘∗
𝑗

𝑁0

)
.(10)

The factor 1
2 appears in (8), (9) and (10) because of the two

hops. Subject to the total power constraint and the information
rate constraint to correctly decode the source symbol by the
relays on the 𝑘th subcarrier, the achievable secrecy rate on
the 𝑘th subcarrier 𝑅𝑠(𝑃

𝑘
0 ) for DF is obtained by solving the

following optimization problem [11,13]:

𝑅𝑠(𝑃
𝑘
0 ) = max

𝑃𝑘
𝑠 , 𝝓𝑘

min
𝑗:1,2,⋅⋅⋅ ,𝐽𝑘

{𝑅𝑘
𝐷 −𝑅𝑘

𝐸
𝑗
}+

= max
𝑃𝑘
𝑠 ,𝝓𝑘

min
𝑗:1,2,⋅⋅⋅ ,𝐽𝑘

1

2
log2

(
𝑁0 + 𝑃 𝑘

𝑠 ∣𝛼𝑘
0 ∣2 +𝜶𝑘𝝓𝑘𝝓𝑘∗𝜶𝑘∗

𝑁0 + 𝑃 𝑘
𝑠 ∣𝛽𝑘

0𝑗 ∣2 + 𝜷𝑘
𝑗𝝓

𝑘𝝓𝑘∗𝜷𝑘∗
𝑗

)

=
1

2
log2 max

𝑃𝑘
𝑠 ,𝝓𝑘

min
𝑗:1,2,⋅⋅⋅ ,𝐽𝑘

(
𝑁0 + 𝑃 𝑘

𝑠 ∣𝛼𝑘
0 ∣2 +𝜶𝑘𝝓𝑘𝝓𝑘∗𝜶𝑘∗

𝑁0 + 𝑃 𝑘
𝑠 ∣𝛽𝑘

0𝑗 ∣2 + 𝜷𝑘
𝑗𝝓

𝑘𝝓𝑘∗𝜷𝑘∗
𝑗

)
(11)

s.t. 𝑃 𝑘
𝑠 ≥ 0, 𝑃 𝑘

𝑠 + 𝝓𝑘∗𝝓𝑘 ≤ 𝑃 𝑘
0 ,

𝑅𝑘
𝑅𝑖

≥ 𝑅𝑘
𝐷, ∀𝑖 = 1, 2 ⋅ ⋅ ⋅ ,𝑁, (12)

where {𝑎}+ = max(𝑎, 0), and w.l.o.g we drop this notation
assuming that secrecy rate is a non-negative number. Defining

Φ𝑘 △
= 𝝓𝑘𝝓𝑘∗, the 𝑖th relay’s transmit power on the 𝑘th

subcarrier is given by the 𝑖th diagonal element of Φ𝑘. We



can write the above secrecy rate expression in the following
equivalent optimization form:

𝑅𝑠(𝑃
𝑘
0 ) =

1

2
log2 max

𝑃𝑘
𝑠 , Φ𝑘

min
𝑗:1,2,⋅⋅⋅ ,𝐽𝑘

𝑟𝑘

𝑠𝑘𝑗
(13)

s.t. Φ𝑘 ર 0, 𝑟𝑎𝑛𝑘(Φ𝑘) = 1, 𝑃 𝑘
𝑠 ≥ 0,

𝑃 𝑘
𝑠 + 𝑡𝑟𝑎𝑐𝑒(Φ𝑘) ≤ 𝑃 𝑘

0 ,
1

2
log2

(
1 +

𝑃 𝑘
𝑠 ∣𝛾𝑘𝑖 ∣2
𝑁0

)
≥

1

2
log2

(
1 +

𝑃 𝑘
𝑠 ∣𝛼𝑘

0 ∣2 +𝜶𝑘Φ𝑘𝜶𝑘∗

𝑁0

)
, ∀𝑖 = 1, 2 ⋅ ⋅ ⋅ ,𝑁, (14)

where

𝑟𝑘 = (𝑁0 + 𝑃 𝑘
𝑠 ∣𝛼𝑘

0 ∣2 +𝜶𝑘Φ𝑘𝜶𝑘∗),

𝑠𝑘𝑗 = (𝑁0 + 𝑃 𝑘
𝑠 ∣𝛽𝑘

0𝑗 ∣2 + 𝜷𝑘
𝑗Φ

𝑘𝜷𝑘∗
𝑗 ).

Further, relaxing the rank constraint on Φ𝑘 and dropping
the logarithms, the optimization problem (13) to compute
the secrecy rate expression can be written in the following
optimization form:

max
𝑃𝑘

𝑠 , Φ𝑘
min

𝑗:1,2,⋅⋅⋅ ,𝐽𝑘

𝑟𝑘

𝑠𝑘𝑗
(15)

s.t. Φ𝑘 ર 0, 𝑃 𝑘
𝑠 ≥ 0, 𝑃 𝑘

𝑠 + 𝑡𝑟𝑎𝑐𝑒(Φ𝑘) ≤ 𝑃 𝑘
0 ,

𝑁0 + 𝑃 𝑘
𝑠 ∣𝛾𝑘𝑖 ∣2 ≥ 𝑟𝑘, ∀𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑁. (16)

The innermost minimization min
𝑗:1,⋅⋅⋅ ,𝐽𝑘

𝑟𝑘

𝑠𝑘
𝑗

is equivalent to

max
𝑡𝑘

𝑡𝑘 such that 𝑟𝑘 − 𝑡𝑘𝑠𝑘𝑗 ≥ 0, ∀𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝐽𝑘. So,

we write (15) and (16) in the following single maximization
form:

max
𝑃𝑘

𝑠 , Φ𝑘
max
𝑡𝑘

𝑡𝑘 = max
𝑃𝑘

𝑠 , Φ𝑘, 𝑡𝑘
𝑡𝑘 (17)

s.t. Φ𝑘 ર 0, 𝑃 𝑘
𝑠 ≥ 0, 𝑃 𝑘

𝑠 + 𝑡𝑟𝑎𝑐𝑒(Φ𝑘) ≤ 𝑃 𝑘
0 ,

𝑁0 + 𝑃 𝑘
𝑠 ∣𝛾𝑘𝑖 ∣2 ≥ 𝑟𝑘, ∀𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑁,

𝑟𝑘 − 𝑡𝑘𝑠𝑘𝑗 ≥ 0, ∀𝑗 = 1, 2 ⋅ ⋅ ⋅ ,𝐽𝑘. (18)

We prove that 𝑟𝑎𝑛𝑘(Φ𝑘) = 1 in the Appendix. We also
numerically confirm that 𝑟𝑎𝑛𝑘(Φ𝑘) = 1. This implies that
optimization problems (13), (15) and (17) are equivalent. For
a given 𝑡𝑘, the above problem is formulated as the following
semi-definite feasibility problem:

find 𝑃 𝑘
𝑠 , Φ𝑘 (19)

subject to the constraints in (18). The maximum value of 𝑡𝑘,
denoted by 𝑡𝑘𝑚𝑎𝑥, can be obtained using bisection method as
follows. Let 𝑡𝑘𝑚𝑎𝑥 lie in the interval [𝑡𝑘𝑙𝑙, 𝑡

𝑘
𝑢𝑙]. The value of 𝑡𝑘𝑙𝑙

can be taken as 1 (corresponding to the minimum secrecy rate
of 0) and 𝑡𝑘𝑢𝑙 can be taken as min

𝑖:1,2,⋅⋅⋅ ,𝑁
(1 +

𝑃𝑘
0 ∣𝛾𝑘

𝑖 ∣2
𝑁0

), which

corresponds to the minimum information rate to the relays
when the total available power 𝑃 𝑘

0 is allotted to the source.
Check the feasibility of (18) at 𝑡𝑘 = (𝑡𝑘𝑙𝑙 + 𝑡𝑘𝑢𝑙)/2. If feasible,
then 𝑡𝑘𝑙𝑙 = 𝑡𝑘, else 𝑡𝑘𝑢𝑙 = 𝑡𝑘. Repeat this until 𝑡𝑘𝑢𝑙 − 𝑡𝑘𝑙𝑙 ≤ 𝜁,

where 𝜁 is a small positive number. Using 𝑡𝑘𝑚𝑎𝑥 in (13), the
secrecy rate is given by

𝑅𝑠(𝑃
𝑘
0 ) =

1

2
log2 𝑡

𝑘
𝑚𝑎𝑥. (20)

We now show the concavity of 𝑅𝑠(𝑃
𝑘
0 ) as a function of 𝑃 𝑘

0 .
First, we show that for a given total power 𝑃 𝑘

0 in the interval
(0, 𝑃0], 𝑅𝑠(𝑃

𝑘
0 ) attains its maximum when 𝑃 𝑘

𝑠 + 𝝓𝑘∗𝝓𝑘 =
𝑃 𝑘
0 , i.e., when entire total power is used. We write (11) and

its constraints (12) in terms of a new vector 𝝍𝑘 ∈ ℂ(𝑁+1)×1

as

𝑅𝑠(𝑃
𝑘
0 ) = max

𝝍𝑘
min

𝑗:1,2,⋅⋅⋅ ,𝐽𝑘

(𝑅𝑘
𝐷 −𝑅𝑘

𝐸
𝑗
)

= max
𝝍𝑘

min
𝑗:1,⋅⋅⋅ ,𝐽𝑘

1

2

{
log2

(
1 +

𝝍𝑘∗A𝑘𝝍𝑘

𝑁0

)

− log2

(
1 +

𝝍𝑘∗B𝑘
𝑗𝝍

𝑘

𝑁0

)}
(21)

s.t. 𝝍𝑘∗𝝍𝑘 ≤ 𝑃 𝑘
0 ,

𝑅𝑘
𝑅𝑖

−𝑅𝑘
𝐷 =

1

2
log2

(
1 +

𝝍𝑘∗C𝑘
𝑖𝝍

𝑘

𝑁0

)
−

1

2
log2

(
1 +

𝝍𝑘∗A𝑘𝝍𝑘

𝑁0

)
≥ 0, ∀𝑖 = 1, 2 ⋅ ⋅ ⋅ ,𝑁, (22)

where 𝝍𝑘 = [
√
𝑃 𝑘
𝑠 , 𝝓𝑘𝑇 ]𝑇 , and A𝑘, B𝑘

𝑗 and C𝑘
𝑖 are (𝑁 +

1)× (𝑁 + 1) matrices given by

A𝑘 = [𝛼𝑘∗
0 𝛼𝑘

0 , 0; 0, 𝜶𝑘∗𝜶𝑘] ર 0,

B𝑘
𝑗 = [𝛽𝑘∗

0𝑗 𝛽
𝑘
0𝑗 , 0; 0, 𝜷𝑘∗

𝑗 𝜷𝑘
𝑗 ] ર 0,

C𝑘
𝑖 = [𝛾𝑘∗𝑖 𝛾𝑘𝑖 , 0; 0, 0] ર 0.

Let the solution of the above optimization problem be feasible
with 𝑅𝑠(𝑃

𝑘
0 ) > 0, and 𝝍𝑘 =

√
𝑃 𝑘𝝍𝑘

𝑢, where 𝝍𝑘
𝑢 is a unit-

norm vector in the direction of 𝝍𝑘. From the power constraint,

𝝍𝑘∗𝝍𝑘 = 𝑃 𝑘𝝍𝑘∗
𝑢 𝝍𝑘

𝑢 = 𝑃 𝑘 ≤ 𝑃 𝑘
0 . Since

𝑑(𝑅𝑘
𝐷−𝑅𝑘

𝐸
𝑗
)

𝑑𝑃𝑘 > 0

at 𝝍𝑘 =
√
𝑃 𝑘𝝍𝑘

𝑢, ∀𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝐽𝑘, and
𝑑(𝑅𝑘

𝑅𝑖
−𝑅𝑘

𝐷 )

𝑑𝑃𝑘 ≥ 0

at 𝝍𝑘 =
√
𝑃 𝑘𝝍𝑘

𝑢, ∀𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑁 , this implies that the
secrecy rate maximum occurs at 𝑃 𝑘 = 𝑃 𝑘

0 . Hence, 𝑅𝑠(𝑃
𝑘
0 )

is a monotonically increasing function in 𝑃 𝑘
0 over the interval

[0, 𝑃0]. Also,
𝑑2(𝑅𝑘

𝐷−𝑅𝑘
𝐸

𝑗
)

𝑑𝑃𝑘
0

2 < 0 at 𝝍𝑘 =
√
𝑃 𝑘
0 𝝍

𝑘
𝑢, ∀𝑗 =

1, 2, ⋅ ⋅ ⋅ ,𝐽𝑘. This further implies that 𝑅𝑠(𝑃
𝑘
0 ) is concave in

𝑃 𝑘
0 over the interval [0, 𝑃0].
Let 𝐿 (⩽ 𝑀) be the number of subcarriers having respective

𝑅𝑠(𝑃
𝑘
0 ) > 0 for any 𝑃 𝑘

0 > 0. This can be verified by
solving (17) for each subcarrier with some fixed 𝑃 𝑘

0 > 0
e.g. 𝑃 𝑘

0 = 𝑃0 > 0. We also obtain the unit norm vector
𝝍𝑘

𝑢 = 1√
𝑃𝑘

0

[
√
𝑃 𝑘
𝑠 , 𝝓𝑘𝑇 ]𝑇 for each subcarrier by solving

(17) with some fixed 𝑃 𝑘
0 > 0 e.g. 𝑃 𝑘

0 = 𝑃0 > 0. With this,
all 𝐿 subcarriers 𝑅𝑠(𝑃

𝑘
0 ) will be concave functions in their

respective 𝑃 𝑘
0 which follows from the previous discussion. We

discard remaining 𝑀 − 𝐿 subcarriers because they will not



lead to any positive secrecy rate. We obtain the maximum sum
secrecy rate by solving the following optimization problem:

Sum Secrecy Rate = max
𝑃 1

0 , 𝑃 2
0 ,⋅⋅⋅ ,𝑃𝐿

0

𝐿∑

𝑘=1

𝑅𝑠(𝑃
𝑘
0 ) (23)

= max
𝑃 1

0 , 𝑃 2
0 ,⋅⋅⋅ ,𝑃𝐿

0

𝐿∑

𝑘=1

1

2

{
log2

(
1 +

𝑃 𝑘
0 𝝍

𝑘∗
𝑢 A𝑘𝝍𝑘

𝑢

𝑁0

)

− log2

(
1 +

𝑃 𝑘
0 𝝍

𝑘∗
𝑢 B𝑘

𝑗0
𝝍𝑘

𝑢

𝑁0

)}
(24)

s.t. ∀𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐿, 0 ≤ 𝑃 𝑘
0 ≤ 𝑃0,

𝐿∑

𝑘=1

𝑃 𝑘
0 ≤ 𝑃0, (25)

where 𝑗0 = argmax𝑗:1,2,⋅⋅⋅ ,𝐽𝑘
𝝍𝑘∗

𝑢 B𝑘
𝑗𝝍

𝑘
𝑢, i.e., the eaves-

dropper index having maximum information rate on the 𝑘th
subcarrier. The objective function in (23) and its equivalent
(24) is a sum of 𝐿 concave functions, and all the constraints
in (25) are linear. This implies that the optimization problem
(24) is a convex optimization problem, or, to be more specific,
a concave maximization problem. For a convex optimization
problem, the first order necessary conditions (KKT) are also
sufficient. This implies that a local maximum of the above
optimization problem will also be a global maximum. We
note that the existing convex optimization tools can not be
used to solve (24). However, the optimal solution of (24) can
be obtained using interior-point method. As discussed above,
optimality of the solution is guaranteed due to the fact that
(24) is a concave maximization problem.

A. Low complexity suboptimum power allocation

We will compare the sum secrecy rate achieved by the above
optimum power allocation (OPA) scheme with that of equal
power allocation (EPA) scheme, where the total power 𝑃0 is
distributed equally among all the 𝑀 subcarriers in the system.
We refer to the later scheme as ‘EPA scheme 1’. Another
scheme is to distribute the total power 𝑃0 equally among
the 𝐿 subcarriers which have non-zero secrecy rate for any
𝑃 𝑘
0 > 0. We refer to this scheme as ‘EPA scheme 2’. EPA

schemes 1 and 2 are low complexity suboptimum schemes.
Since EPA scheme 2 does not waste its power on zero secrecy
rate subchannels, it is expected to achieve higher sum secrecy
rate than EPA scheme 1.

IV. RESULTS AND DISCUSSIONS

We evaluated the sum secrecy rates of the OPA scheme,
EPA scheme 1 and EPA scheme 2 for a system with 𝑁 = 2
relays, 𝑀 = 4 subcarriers, and 𝐽 = 3 eavesdroppers on each
subcarrier. We consider the following channel gains for all
subcarriers:

[
𝜸1𝑇 , 𝜸2𝑇 , 𝜸3𝑇 , 𝜸4𝑇

]
=

[
− 0.9483− 0.4119𝑖, −1.1554 +

0.1758𝑖, 0.2077 + 0.2217𝑖, −0.7993 + 0.3741𝑖; 0.3391 −
0.6338𝑖, −1.0201−1.0534𝑖, −0.0993−1.4320𝑖, −0.2069+

0.2429𝑖
]
,

[𝛼1
0, 𝛼2

0, 𝛼3
0, 𝛼4

0] = [0.2681 + 0.0181𝑖, −0.2446 −
0.7506𝑖, 0.2405 + 0.1007𝑖, −0.3792− 0.2593𝑖],

[𝛽1
01, 𝛽2

01, 𝛽3
01, 𝛽4

01] = [−0.0547 − 0.0076𝑖, 0.0107 +
0.0717𝑖, −0.0238− 0.0336𝑖, 0.0686 + 0.0049𝑖],

[𝛽1
02, 𝛽2

02, 𝛽3
02, 𝛽4

02] = [0.0282 − 0.0970𝑖, 0.0789 −
0.0485𝑖, 0.0439 + 0.0235𝑖, −0.0203− 0.0705𝑖],

[𝛽1
03, 𝛽2

03, 𝛽3
03, 𝛽4

03] = [0.0206 + 0.0287𝑖, 0.0783 +
0.0860𝑖, 0.0173 + 0.1024𝑖, 0.0117− 0.0725𝑖],

[𝜶1𝑇 , 𝜶2𝑇 , 𝜶3𝑇 , 𝜶4𝑇 ] = [0.0453 + 0.0374𝑖, −0.1867 +
1.0868𝑖, 0.6052 + 0.7846𝑖, 0.5741 + 0.2726𝑖; 0.0164 −
0.0112𝑖, 1.7645 − 1.1383𝑖, −0.6017 − 0.7847𝑖, 0.4951 +
0.6825𝑖],

[𝜷1𝑇
1 , 𝜷2𝑇

1 , 𝜷3𝑇
1 , 𝜷4𝑇

1 ] = [0.0579 + 0.0392𝑖, −0.0655 +
0.0044𝑖, −0.0568 + 0.0141𝑖, −0.0637 + 0.1471𝑖; 0.0026 −
0.0294𝑖, −0.0079 + 0.0323𝑖, −0.1177 + 0.0182𝑖, 0.0416 −
0.1610𝑖],

[𝜷1𝑇
2 , 𝜷2𝑇

2 , 𝜷3𝑇
2 , 𝜷4𝑇

2 ] = [0.0240 + 0.0935𝑖, 0.0468 +
0.0931𝑖, 0.0628 − 0.1011𝑖, 0.0600 − 0.0357𝑖; 0.0205 −
0.0045𝑖, −0.0411 + 0.0161𝑖, 0.0122 − 0.0106𝑖, 0.0681 −
0.1223𝑖],

[𝜷1𝑇
3 , 𝜷2𝑇

3 , 𝜷3𝑇
3 , 𝜷4𝑇

3 ] = [−0.0295 + 0.0204𝑖, 0.0510 +
0.0570𝑖, 0.0624 + 0.0085𝑖, −0.0103 + 0.0404𝑖; −0.0435 +
0.0824𝑖, 0.0240 − 0.0959𝑖, 0.0201 − 0.0157𝑖, −0.0063 −
0.0212𝑖].

The secrecy rates achieved on subcarriers 1, 2, 3, and
4 as a function of total power under various power allocation
schemes are plotted in Fig. 2, Fig. 3, Fig. 4, and Fig. 5,
respectively. The sum secrecy rates achieved in the system
as a function of total power under various power allocation
schemes are plotted in Fig. 6. As expected, OPA scheme
achieves the highest sum secrecy rate among all the three
schemes. EPA scheme 1, though less complex, achieves
much less sum secrecy rate. EPA scheme 2, while being
less complex than OPA scheme, achieves better sum secrecy
rate than EPA scheme 1 and closer to sum secrecy rate
of OPA scheme. As pointed out, EPA scheme 2 achieves
higher sum secrecy rate than EPA scheme 1 because it does
not use its power on zero secrecy rate subcarriers. At high
transmit powers, the performance difference between the
three schemes tend to diminish.

V. CONCLUSIONS

We considered the sum secrecy rate in multicarrier decode-
and-forward relay beamforming. We transformed the sum
secrecy rate maximization problem to an equivalent concave
maximization problem which can be easily solved using
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Fig. 2. Subcarrier 1 secrecy rate in DF multicarrier relay beamforming with
𝑁 = 2, 𝑀 = 4, 𝐽 = 3.
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Fig. 3. Subcarrier 2 secrecy rate in DF multicarrier relay beamforming with
𝑁 = 2, 𝑀 = 4, 𝐽 = 3.

interior-point method. We obtained the optimal source power
and relay weights on each subcarrier which maximized the
sum secrecy rate. Numerical results showed that the sum
secrecy rate with optimal power allocation across subcarriers
was more than the sum secrecy rate with equal power allo-
cation. We also proposed a low complexity suboptimal power
allocation scheme which outperformed equal power allocation
scheme.

APPENDIX

In this appendix, we prove that the solution of the optimiza-
tion problem (17) has rank 1, i.e., 𝑟𝑎𝑛𝑘(Φ𝑘) = 1. We take
the Lagrangian of the objective function −𝑡𝑘 with constraints
in (18) as follows [19]:

ℓ(𝑡𝑘, 𝑃 𝑘
𝑠 , Φ𝑘, 𝜆𝑘

𝑠 , Λ𝑘, 𝜆𝑘
0 , 𝜇

𝑘
𝑗 , 𝜈

𝑘
𝑖 ) = −𝑡𝑘 −

𝜆𝑘
𝑠𝑃

𝑘
𝑠 − 𝑡𝑟𝑎𝑐𝑒(Λ𝑘Φ𝑘) + 𝜆𝑘

0(𝑃
𝑘
𝑠 + 𝑡𝑟𝑎𝑐𝑒(Φ𝑘)− 𝑃 𝑘

0 )
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Fig. 4. Subcarrier 3 secrecy rate in DF multicarrier relay beamforming with
𝑁 = 2, 𝑀 = 4, 𝐽 = 3.
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Fig. 5. Subcarrier 4 secrecy rate in DF multicarrier relay beamforming with
𝑁 = 2, 𝑀 = 4, 𝐽 = 3.

+

𝐽𝑘∑

𝑗=1

𝜇𝑘
𝑗 (𝑡

𝑘𝑠𝑘𝑗 − 𝑟𝑘) +

𝑁∑

𝑖=1

𝜈𝑘𝑖 (𝑟
𝑘 −𝑁0 − 𝑃 𝑘

𝑠 ∣𝛾𝑘𝑖 ∣2), (26)

where 𝜆𝑘𝑠 ≥ 0, Λ𝑘 ર 0, 𝜆𝑘0 ≥ 0, 𝜇𝑘
𝑗 ≥ 0, 𝜈𝑘𝑖 ≥ 0 are

Lagrangian multipliers. The KKT conditions for (26) are as
follows:

(a) all constraints in (18),

(b) 𝜆𝑘
𝑠𝑃

𝑘
𝑠 = 0. For positive secrecy rate, 𝑃 𝑘

𝑠 > 0 =⇒ 𝜆𝑘𝑠 =
0,

(c) 𝑡𝑟𝑎𝑐𝑒(Λ𝑘Φ𝑘) = 0. Since Λ𝑘 ર 0 and Φ𝑘 ર 0 =⇒
Λ𝑘Φ𝑘 = 0,

(d) 𝜆𝑘
0(𝑃

𝑘
𝑠 + 𝑡𝑟𝑎𝑐𝑒(Φ𝑘)− 𝑃 𝑘

0 ) = 0,

(e) ∀𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝐽𝑘, 𝜇𝑘
𝑗 (𝑡

𝑘𝑠𝑘𝑗 − 𝑟𝑘) = 0,
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Fig. 6. Sum secrecy rate in DF multicarrier relay beamforming with 𝑁 =
2, 𝑀 = 4, 𝐽 = 3.

(f) ∀𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑁, 𝜈𝑘𝑖 (𝑟
𝑘 −𝑁0 − 𝑃 𝑘

𝑠 ∣𝛾𝑘𝑖 ∣2) = 0,

(g) ∂ℓ
∂𝑡𝑘

= 0 =⇒ ∑𝐽𝑘

𝑗=1 𝜇
𝑘
𝑗 𝑠

𝑘
𝑗 = 1 =⇒ not all 𝜇𝑘

𝑗 ’s can be
zero simultaneously,

(h) ∂ℓ
∂𝑃𝑘

𝑠
= 0 =⇒ 𝜆𝑘0 +

∑𝐽𝑘

𝑗=1 𝜇
𝑘
𝑗 (𝑡

𝑘∣𝛽𝑘
0𝑗 ∣2 − ∣𝛼𝑘

0 ∣2) +∑𝑁
𝑖=1 𝜈

𝑘
𝑖 (∣𝛼𝑘

0 ∣2 − ∣𝛾𝑘𝑖 ∣2) = 0,

(i) ∂ℓ
∂Φ𝑘 = 0 =⇒ Λ𝑘 = 𝜆𝑘

0𝑰 +
∑𝐽𝑘

𝑗=1 𝜇
𝑘
𝑗 (𝑡

𝑘𝜷𝑘∗
𝑗 𝜷𝑘

𝑗 −
𝜶𝑘∗𝜶𝑘) +

∑𝑁
𝑖=1 𝜈

𝑘
𝑖 (𝜶

𝑘∗𝜶𝑘) ર 0.

The KKT conditions (𝑖) and (ℎ) in the above imply that

𝜆𝑘
0𝑃

𝑘
𝑠 +

𝐽𝑘∑

𝑗=1

𝜇𝑘
𝑗 (𝑡

𝑘∣𝛽𝑘
0𝑗 ∣2 − ∣𝛼𝑘

0 ∣2)𝑃 𝑘
𝑠 +

𝑁∑

𝑖=1

𝜈𝑘𝑖 (∣𝛼𝑘
0 ∣2 − ∣𝛾𝑘𝑖 ∣2)𝑃 𝑘

𝑠 + 𝜆𝑘0𝑡𝑟𝑎𝑐𝑒(Φ
𝑘) +

𝐽𝑘∑

𝑗=1

𝜇𝑘
𝑗 (𝑡

𝑘𝜷𝑘
𝑗Φ

𝑘𝜷𝑘∗
𝑗 −𝜶𝑘Φ𝑘𝜶𝑘∗) +

𝑁∑

𝑖=1

𝜈𝑘𝑖 (𝜶
𝑘Φ𝑘𝜶𝑘∗) = 0,

which, in turn, implies that

𝜆𝑘
0𝑃

𝑘
𝑠 + 𝜆𝑘0𝑡𝑟𝑎𝑐𝑒(Φ

𝑘) =

𝐽𝑘∑

𝑗=1

𝜇𝑘
𝑗𝑁0(𝑡

𝑘 − 1).

With 𝑡𝑘 > 1 for positive secrecy rate, the above expression
implies that 𝜆𝑘0 > 0. With 𝜆𝑘

0 > 0, KKT condition (𝑑) implies
that 𝑃 𝑘

𝑠 + 𝑡𝑟𝑎𝑐𝑒(Φ𝑘) = 𝑃 𝑘
0 , i.e., entire power is used for the

transmission. This further implies that the subcarrier secrecy
rate, 𝑅𝑠(𝑃

𝑘
0 ), is a strictly increasing function in 𝑃 𝑘

0 . Further,
rewriting the KKT condition (𝑖) in the following form

Λ𝑘 +

𝐽𝑘∑

𝑗=1

𝜇𝑘
𝑗 (𝜶

𝑘∗𝜶𝑘) =

𝜆𝑘
0𝑰 +

𝐽𝑘∑

𝑗=1

𝜇𝑘
𝑗 (𝑡

𝑘𝜷𝑘∗
𝑗 𝜷𝑘

𝑗 ) +

𝑁∑

𝑖=1

𝜈𝑘𝑖 (𝜶
𝑘∗𝜶𝑘),

which is ≻ 0 since 𝜆𝑘0 > 0 for positive secrecy rate. This
implies that Λ𝑘 +

∑𝐽𝑘

𝑗=1 𝜇
𝑘
𝑗 (𝜶

𝑘∗𝜶𝑘) is a full rank positive
definite matrix. This further implies that 𝑟𝑎𝑛𝑘(Λ𝑘) ≥ 𝑁 − 1
because

∑𝐽𝑘

𝑗=1 𝜇
𝑘
𝑗 (𝜶

𝑘∗𝜶𝑘) is a rank 1 matrix. The KKT
condition (𝑐) also implies that 𝑟𝑎𝑛𝑘(Λ𝑘) ∕= 𝑁 (assuming
Φ𝑘 ∕= 0). This means that 𝑟𝑎𝑛𝑘(Λ𝑘) = 𝑁 − 1. This and
KKT condition (𝑐) (assuming Φ𝑘 ∕= 0) imply 𝑟𝑎𝑛𝑘(Φ𝑘) = 1.
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