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Abstract—In this paper, we study sum secrecy rate in multi-
carrier decode-and-forward relay beamforming. We obtain the
optimal source power and relay weights on each subcarrier
which maximize the sum secrecy rate. For a given total power
on a given subcarrier k, PY, we reformulate the optimization
problem by relaxing the rank-1 constraint on the complex positive
semidefinite relay weight matrix, and solve using semidefinite
programming. We analytically prove that the solution to the
relaxed optimization problem is indeed rank 1. We show that
the subcarrier secrecy rate, R;(Py), is a concave function in
total power PY if Rs(PY) > 0 for any P > 0. Numerical
results show that the sum secrecy rate with optimal power
allocation across subcarriers is more than the sum secrecy rate
with equal power allocation. We also propose a low complexity
suboptimal power allocation scheme which outperforms equal
power allocation scheme.
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1. INTRODUCTION

Wireless networks are vulnerable to eavesdropping because
of the broadcast nature of wireless channels. Secure wireless
communication in the presence of eavesdroppers is a topic
of current interest. Traditional methods handle security using
encryption methods at the application layer. An alternate
approach is physical layer security, which aims to provide
security through physical layer mechanisms by which the
intended receiver gets the information reliably while the eaves-
droppers get no information [1]-[4]. Achievable secrecy rates
and secrecy capacity bounds in single and multiple antenna
point-to-point wireless wiretap channels have been studied in
[5]-[10], and point-to-multipoint wiretap channel has been
studied in [11]. There is growing interest in secure wireless
communications via cooperative relaying. Cooperative relays
can act as distributed antennas, and therefore can help to
improve secrecy rate using relay beamforming [12]-[16].

Several works on secrecy using cooperative relays consider
single carrier schemes. Little work has been done on secrecy
in multicarrier schemes in general, and in multicarrier schemes
with cooperative relaying in particular. For example, [17]
considers achievable secrecy rates in a wiretap OFDM channel
with no relaying. Efficient bit-loading strategies with QAM
input to minimize the secrecy rate loss with respect to the
Gaussian input have been proposed. In [18], a multicarrier
scheme for secrecy with decode-and-forward (DF) relaying has
been studied. The model in [18] used one relay and one eaves-
dropper on each subcarrier. The source and the relay operated
under a total power constraint. Optimum source and relay
powers over the subcarriers were obtained by maximizing the

This work was supported in part by the Indo-French Centre for Applied
Mathematics.

sum secrecy rate. A more general scenario will be to consider
multiple relays with multiple eavesdroppers on each subcarrier,
and to optimally allocate power between source and relays
over the subcarriers so that the sum secrecy rate is maximized
under a total power constraint. A direct extension of the
approach in [18] to multiple relays and multiple eavesdroppers
is not straightforward. In this paper, we solve the optimum
power allocation problem for multiple relays and multiple
eavesdroppers by taking a different approach, where for a
given total power on a given subcarrier k, denoted by P},
we reformulate the optimization problem by relaxing the
rank-1 constraint on the complex positive semidefinite relay
weight matrix, and solve using semidefinite programming. We
analytically prove that the solution to the relaxed optimization
problem is indeed rank 1. We show that the subcarrier secrecy
rate, RS(P(;C), is a concave function in total power Pé“ if
Ry(P¥) > 0 for any Pf > 0. The sum secrecy rate with
the optimal power allocation across subcarriers is shown to be
more than the sum secrecy rate with equal power allocation.
In addition, a low complexity suboptimal power allocation
scheme which outperforms equal power allocation scheme is
also proposed.

Notations: A € CM*Nz implies that A is a complex
matrix of dimension N; X No. A = 0 and A > 0 denote
that A is a positive semidefinite matrix and positive definite
matrix, respectively. I denotes the identity matrix. Transpose
and complex conjugate transpose operations are denoted by
[.]7 and [.]*, respectively. |.| denotes absolute value.

II. SYSTEM MODEL

Consider a multicarrier decode-and-forward cooperative re-
laying scheme with M subcarriers. The system model is
shown in Fig. 1, which consists of a source node S, N relay
nodes {R1, Ry, - ,Ry}, an intended destination node D,
and Jj, eavesdropper nodes {E},E%,--- ,E% } on the kth
subcarrier (1 < k < M), where Jj can be greater than N
(i.e., more eavesdroppers than relays). In addition to the links
from relays to destination node and relays to eavesdropper
nodes, we assume direct links from source to destination node
and source to eavesdropper nodes. For the kth subcarrier, the
complex channel gains between source to relays are denoted
by v* = [vF,4%,--- ,7%] € C*N. Likewise, the channel
gains between relays to destination and relays to the jth
eavesdropper on the kth subcarrier are denoted by of =
[, ok, ak] € CP*N | and ﬁ? = [ﬁfjvﬂgjv'“ 7B]Iifj] €
C'*N, respectively, where j = 1,2,---,.J. The channel
gains on the direct links from source to destination and source
to jth eavesdropper on the kth subcarrier are denoted by ag
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and ﬁgj, respectively. We assume that the eavesdroppers do
not collude [11].

Let Py denote the total transmit power budget in the system
(i.e., source power plus relays power) and let P} denote the
total available power on the kth subcarrier. The communication
between source S and destination D happens in two hops.
Each hop is divided into n channel uses. In the first hop
of transmission on the kth subcarrier, S transmits message
W* which is equiprobable over {1,2,-- ,22"R5(Pg)}. wk
needs to be conveyed to the destination at perfect secrecy
rate R,(PF). For each W* drawn equiprobably over the set
{1,2,--- ,22"R5(P§)}, S, using a stochastic encoder, maps
WP to a codeword { X* }™ _, of length n, where each symbol,
XE in the codeword is i.i.d. ~ CN(0,1). Let P¥ denote
the source transmit power on the kth subcarrier. In the mth
(1 < m < n) channel use, source transmits the weighted
symbol \/PEXE In the following, we will use X* to denote
the symbols in the codeword { X }7 _, on the kth subcarrier.
We also assume that all the channel gains are known and
remain static over the codeword transmit duration.

In the second hop of transmission on the kth subcarrier,
relays retransmit the decoded symbol X* to the destination
D. Let ¢* = [pF, ¢, - - , %17 € CN*! denote the complex
weights applied by the relays on the transmit symbol X*. The
ith (1 < i < N) relay transmits the weighted symbol ¢ X*.

Let y%l, y,]gl and nglj denote the received signals at the
ith relay, destination D and jth eavesdropper E¥, respectively
on the kth subcarrier, in the first hop of transmission. In the
second hop of transmission on the kth subcarrier, the received
signals at the destination and jth eavesdropper are denoted by
y,lgz and y§2], respectively. We have

y%:q/Pf'nyk—l—nﬁ” Vi=1,2,---, N, (1)
vh, = \JPraSX* 4. @)

Ui, =\ PEBGX 4y, G=12 0k )
yh, =k X 1k @
ygzj:ﬁ;?(bkxk"’_n%ﬂv j:1:27"'7Jk~ (5)

The noise components, 7’s, are assumed to be i.i.d.
CN (0, No). We rewrite (2), (4) and (3), (5) in the following
vector forms:

vh o= Wb uh)”
= [\/Praf, """ X" + [0k, mp,]". (©)
yh = Wk, vk, )"

= [VPEBE, BT XE + Ik, k1" (D)

III. SUM SECRECY RATE IN MULTICARRIER DF RELAY
BEAMFORMING

Using (1), (6) and (7), the information rates at the ith relay,
destination D and jth eavesdropper E¥, respectively, on the

Fig. 1.

System model.

kth subcarrier are

poo 1 k. k 1 Pf|7k|2
Ry, = §I(X YR = §log2 (1+T02>= (®)
1
1 Pslc|a15’2+ak¢k‘¢k*ak*
= §1Og2 (1+ N() )7 (9)
A 1
1 Pskk-2+l?kk*k*
= Slog (1+ P, "+ B &7 675, )10)
2 No

The factor % appears in (8), (9) and (10) because of the two
hops. Subject to the total power constraint and the information
rate constraint to correctly decode the source symbol by the
relays on the kth subcarrier, the achievable secrecy rate on
the kth subcarrier Rs(PF) for DF is obtained by solving the
following optimization problem [11,13]:

ky _ . k  pk o+
Re(Fo) = P ey {RD = R}
1 N, Pk‘, k|2 k gk g kx  kx
= max min =lo 2( ot Zlag‘ +ak¢)k¢k*ak*)
Pk gk 51,2, 5 2 No + Ps woj‘? + B 9" B
ot PH sttty
No + P¥|Bg;[? +ﬂ?¢k¢k*ﬂ?*

1 .
= -log, max min (
2 PE gk §i1,2, 0

st. PF >0,

s =

Rf, > R}, Vi=12--- N,

Pkt ¢ ¢* < P},
(12)

where {a}" = max(a,0), and w.l.o.g we drop this notation
assuming that secrecy rate is a non-negative number. Defining
k2 (ﬁkqbk*, the ith relay’s transmit power on the kth
subcarrier is given by the ith diagonal element of dF. We



can write the above secrecy rate expression in the following
equivalent optimization form:

k
ky _ o
Ry(Fy) = 10g2 ppex s min * (13)
st. @ -0, rank({)k) =1, Sk >0
" race(®") < Py, 5 ogy 1+ >
1 Pk k|2 k@k kx*
~ log, (1+ 2lag” + a7 a ) Vi=1,2---,N, (14)
2 Ng
where

= (No+ Pflagl + af@tal),
sy = (No+ PYlfg; > + 872" B57).

J
Further, relaxing the rank constraint on ®* and dropping
the logarithms, the optimization problem (13) to compute
the secrecy rate expression can be written in the following
optimization form:

rk
max min - (15)
PE, ®F 1200k sh
st. ®" >0, PF>0, PFitrace(®") < PE,
No+PERfI? = %, Vi=1,2,--- N. (l6)
The innermost minimization _mln Ir is equivalent to

Jilye Ji S5
—thsk >0, Vj = 1,2,---, Ji. So
t
we write (15) and (16) in the following single maximization
form:

max tk such that r*

max max t¥ = max t* (17)
Pk, @k tk Pk, &k tk
st. ®" >0, PF>0, PFy4 tmce(@k) POIC
No+ PEyE2 > #%) Vi=1,2,--- N,
P —thsk >0, vi=1,2--- Jp. (18)

We prove that rank(®*) = 1 in the Appendix. We also
numerically confirm that rank(®*) = 1. This implies that
optimization problems (13), (15) and (17) are equivalent. For
a given t*, the above problem is formulated as the following
semi-definite feasibility problem:

find PF, ®* (19)

subject to the constraints in (18). The maximum value of t*,
denoted by tmaz, can be obtained using bisection method as
follows. Let t* . lie in the interval [t}, t¥,]. The value of ¢f;
can be taken as 1 (corresponding to the minimurkn secrecy rate
of 0) and ¥, can be taken as Z“lmm N 1+ M) which
corresponds to the minimum information rate to the relays
when the total available power Pk is allotted to the source.
Check the fea51b1hty of (18) at tk (th +tk )y 2. 1f feasible,
then t}; , else tF, = t*. Repeat this until th, —th <,

where ( is a small positive number. Using t¥ , in (13), the

secrecy rate is given by
1

RS(P(?) = 5 10g2 t'lkv:'mz' (20)

We now show the concavity of Rs(Py) as a function of P}.

First, we show that for a given total power P¥ in the interval
(0, Py], Ry(P}) attains its maximum when P¥ + ¢**¢"

Pé“, i.e., when entire total power is used. We write (11) and

its constraints (12) in terms of a new vector ¥* € CV+1x1

as
Ry(F, (;C ) =

max  min
Pk g2, Jy

%{logQ (1 . wk*]‘éokwk)
'(,bk*Bk’lbk
)

(Rl — RS )

— max min

apk gilyee Ji

~log, (1+ @1)

st prrgP

Ry, — R} = -
Ny

where 9" = [\/PF, ¢""]7, and AF, B% and C} are (N +
1) x (N + 1) matrices given by

1
5 logs (1+ ) >0, Vi=12---,N, (22)

A* [ak*af, 0; 0, &**a*] = 0,
BY = [phph, 0; 0, B B) = o0,
ck = [yf*%’“, 0; 0, 0] = 0.

Let the solution of the above optimization problem be feasible
with R (PF) > 0, and ¥" = v/ Pk, where ¢F is a unit-
norm vector in the direction of 1/)]“. From the power constraint,

d(RY,—RY, )
PP = PRt = PE < PE. Since ; — >0
k
at 9 = VPRGE, Vj = 1,2, Jj, and ZEECTD) S g
at " = VPEypl, Vi = 1,2,--- | N, this implies that the

secrecy rate maximum occurs at P* = PF. Hence, Rs(P})
isa monotomcally mcreasmg function in P’“ over the interval

d R
[0, Py). Also, % < 0at gt = JERE, W) =
1,2,---,Ji. This further implies that Rs(PF) is concave in
PF over the interval [0, Py).

Let L (< M) be the number of subcarriers having respective
Rs(Pf) > 0 for any P¥ > 0. This can be verified by
solving (17) for each subcarrier with some fixed Pf > 0
e.g. P = Py > 0. We also obtain the unit norm vector
Pr = FIT for each subcarrier by solving

(17) with some fixed P > 0 e.g. P¥ = P, > 0. With this,
all L subcarriers RS(P({") will be concave functions in their
respective PJ which follows from the previous discussion. We
discard remaining M — L subcarriers because they will not




lead to any positive secrecy rate. We obtain the maximum sum
secrecy rate by solving the following optimization problem:

Sum Secrecy Rate = max

P, P2, ,PE

L
Y R(P) @3

0 k=1
L kx Ak k
1 Plapk* Akap
D DL ey
P, Pg,.),(.,poL ;2{ 82 No
P(;C’l,bk*Bk k
~logy (1+ =) L 4
0go (1 + No (24)
st. Vk=1,2,---,L, 0 < P¥ < P,
L
YR < Py, (25)
k=1
where jo = argmaxj.s,.. J, ¢§*B§¢ﬁ, i.e., the eaves-

dropper index having maximum information rate on the kth
subcarrier. The objective function in (23) and its equivalent
(24) is a sum of L concave functions, and all the constraints
in (25) are linear. This implies that the optimization problem
(24) is a convex optimization problem, or, to be more specific,
a concave maximization problem. For a convex optimization
problem, the first order necessary conditions (KKT) are also
sufficient. This implies that a local maximum of the above
optimization problem will also be a global maximum. We
note that the existing convex optimization tools can not be
used to solve (24). However, the optimal solution of (24) can
be obtained using interior-point method. As discussed above,
optimality of the solution is guaranteed due to the fact that
(24) is a concave maximization problem.

A. Low complexity suboptimum power allocation

We will compare the sum secrecy rate achieved by the above
optimum power allocation (OPA) scheme with that of equal
power allocation (EPA) scheme, where the total power P is
distributed equally among all the M subcarriers in the system.
We refer to the later scheme as ‘EPA scheme 1’. Another
scheme is to distribute the total power F, equally among
the L subcarriers which have non-zero secrecy rate for any
Pt > 0. We refer to this scheme as ‘EPA scheme 2’. EPA
schemes 1 and 2 are low complexity suboptimum schemes.
Since EPA scheme 2 does not waste its power on zero secrecy
rate subchannels, it is expected to achieve higher sum secrecy
rate than EPA scheme 1.

IV. RESULTS AND DISCUSSIONS

We evaluated the sum secrecy rates of the OPA scheme,
EPA scheme 1 and EPA scheme 2 for a system with N = 2
relays, M = 4 subcarriers, and J = 3 eavesdroppers on each
subcarrier. We consider the following channel gains for all
subcarriers:

[T, ¥, 43T, 44T] = [ —0.9483 — 0.4119, —1.1554 +
0.1758i, 0.2077 + 0.2217i, —0.7993 + 0.37414; 0.3391 —
0.6338i, —1.0201 —1.05344, —0.0993 — 1.4320i, —0.2069 +

0.24294],
[ad, a2, af, af] = [0.2681 + 0.0181i, —0.2446 —
0.7506i, 0.2405 + 0.1007i, —0.3792 — 0.25931],

(BY, B3, B3, B4] = [-0.0547 — 0.0076i, 0.0107 +
0.0717i, —0.0238 — 0.0336i, 0.0686 + 0.0049i],

BYy, B%, B3, B3] = [0.0282 — 0.0970i, 0.0789 —
0.0485i, 0.0439 + 0.0235i, —0.0203 — 0.07054],

[Bla, B2, B, Bl] = [0.0206 + 0.0287i, 0.0783 +
0.0860i, 0.0173 + 0.10244, 0.0117 — 0.0725i],

[T, T, &®T, a*T] = [0.0453 + 0.0374i, —0.1867 +
1.0868i, 0.6052 + 0.7846i, 0.5741 + 0.2726i; 0.0164 —
0.0112i, 1.7645 — 1.1383i, —0.6017 — 0.7847i, 0.4951 +
0.68251],

BT, B, @37, 31T = [0.0579 + 0.0392i, —0.0655 +
0.0044i, —0.0568 + 0.0141i, —0.0637 + 0.14714; 0.0026 —
0.0294i, —0.0079 + 0.0323i, —0.1177 + 0.0182i, 0.0416 —
0.16104],

B%, B3, B3', 35T = [0.0240 + 0.0935i, 0.0468 +
0.09317, 0.0628 — 0.10117, 0.0600 — 0.03574; 0.0205 —
0.0045i, —0.0411 + 0.01614, 0.0122 — 0.0106i, 0.0681 —
0.1223d],

857, Bat, @37, B3T] = [~0.0295 + 0.02047, 0.0510 +
0.0570i, 0.0624 + 0.0085i, —0.0103 + 0.0404i; —0.0435 +
0.0824i, 0.0240 — 0.0959i, 0.0201 — 0.0157i, —0.0063 —
0.0212i).

The secrecy rates achieved on subcarriers 1, 2, 3, and
4 as a function of total power under various power allocation
schemes are plotted in Fig. 2, Fig. 3, Fig. 4, and Fig. 5,
respectively. The sum secrecy rates achieved in the system
as a function of total power under various power allocation
schemes are plotted in Fig. 6. As expected, OPA scheme
achieves the highest sum secrecy rate among all the three
schemes. EPA scheme 1, though less complex, achieves
much less sum secrecy rate. EPA scheme 2, while being
less complex than OPA scheme, achieves better sum secrecy
rate than EPA scheme 1 and closer to sum secrecy rate
of OPA scheme. As pointed out, EPA scheme 2 achieves
higher sum secrecy rate than EPA scheme 1 because it does
not use its power on zero secrecy rate subcarriers. At high
transmit powers, the performance difference between the
three schemes tend to diminish.

V. CONCLUSIONS

We considered the sum secrecy rate in multicarrier decode-
and-forward relay beamforming. We transformed the sum
secrecy rate maximization problem to an equivalent concave
maximization problem which can be easily solved using
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interior-point method. We obtained the optimal source power
and relay weights on each subcarrier which maximized the
sum secrecy rate. Numerical results showed that the sum
secrecy rate with optimal power allocation across subcarriers
was more than the sum secrecy rate with equal power allo-
cation. We also proposed a low complexity suboptimal power
allocation scheme which outperformed equal power allocation
scheme.

APPENDIX

In this appendix, we prove that the solution of the optimiza-
tion problem (17) has rank 1, i.e., rank(®*) = 1. We take
the Lagrangian of the objective function —t* with constraints
in (18) as follows [19]:

ok, PE,®F N AR AL pb uF) = —tF

2

NePE —trace(A*®%) + NE(PF + trace(®%) — PY)
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Fig. 4. Subcarrier 3 secrecy rate in DF multicarrier relay beamforming with
N=2 M=4, J=3.
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Jx N
+ Yoy =ty + Y vEet = No— PERSP), 26)
Jj=1 i=1

where A\F > 0, AkEO, )\’5207 uf207 I/fZOare
Lagrangian multipliers. The KKT conditions for (26) are as
follows:

(a) all constraints in (18),

(b) AEPF = 0. For positive secrecy rate, P¥ >0 = \f =
0,

(c) tmce(Ak<I>k) = 0. Since A* = 0 and ®* - 0 —
Ak®F =0,

(d) NE(PE + trace(®*) — PF) = 0,

@ Vji=1,2,---,Jp, ph(thsh—rk)=0,
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(f) Vi=1,2,--- N, vF(r* —No— PF]yF|?) =0,

o J kk 0
(@ 2% :‘0 — Zjil pjsj =1 = notall uj’s can be
zero simultaneously,

J
(h) 6%@ =0 = /\(}ﬁ + Zjil N?(tkngp - |0415|2) +

Y
Yimi vE(lo§? = %) =0,

(i) gpr = 0 = A" = NI+ 3778, pb (18] 6] —
ok ak) + Zfil vk (a**ak) = 0.

The KKT conditions () and (k) in the above imply that

Jk
WP+ S B — )P +
j=1
N
5ol ~ PP + Altrace(@") +
i=1

Jk
Z#?(tkﬁgcq)kﬁ?* _ akq)kak*) +
j=1

N
Zuf(aki'kak*) = 0,
i=1

which, in turn, implies that

Ik
AEPE 4+ Artrace(®%) = Z,u?No(tk—l).
j=1

With t* > 1 for positive secrecy rate, the above expression
implies that A% > 0. With A% > 0, KKT condition (d) implies
that PS’C +trace(<1>k) = Péc, i.e., entire power is used for the
transmission. This further implies that the subcarrier secrecy
rate, RS(P(;C ), is a strictly increasing function in Péc. Further,
rewriting the KKT condition (¢) in the following form

i
AP 4 Z,uf(ak*ak) =
j=1

Jk
AT+ D it By 8;) +

j=1 i=1

which is > 0 since )\J’g > 0 for positive secrecy rate. This
implies that A + >t u;?(ak*a’“) is a full rank positive
definite matrix. This further implies that rank(A*) > N —1
because Z;il u;?’(ak*ak’) is a rank 1 matrix. The KKT
condition (c) also implies that rank(A*) # N (assuming
®* £ 0). This means that rank(A*) = N — 1. This and
KKT condition (c) (assuming ®" # 0) imply rank(®") = 1.
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