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SIR-Optimized Weighted Linear
Parallel Interference Canceller on Fading Channels
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Abstract— In this letter, we present a weighted linear par-
allel interference canceller (LPIC) where the multiple access
interference (MAI) estimate in a stage is weighted by a factor
before cancellation on Rayleigh fading and diversity channels. We
obtain exact expressions for the average signal-to-interference
ratio (SIR) at the output of the cancellation stages which we
maximize to obtain the optimum weights for different stages. We
also obtain closed-form expressions for the optimum weights for
the different stages. We show that this SIR-optimized weighted
LPIC scheme clearly outperforms both the matched filter (MF)
detector as well as the conventional LPIC (where the weight is
taken to be unity for all stages), in both near-far as well as non-
near-far conditions on Rayleigh fading and diversity channels.

Index Terms— Linear parallel interference cancellation, signal-
to-interference ratio, fading channels.

I. INTRODUCTION

PARALLEL interference cancellation (PIC) is a multiuser
detection scheme where a desired user’s decision statistic

is obtained by subtracting an estimate of the multiple access
interference (MAI) from the received signal [1]. PIC lends
itself to a multistage implementation where the decision sta-
tistics of the users from the previous stage are used to estimate
and cancel the MAI in the current stage, and a final decision
statistic is obtained at the last stage. When an estimate of the
MAI is obtained from the hard bit decisions from the previous
stage, it is termed as ‘hard-decision PIC’ (non-linear PIC).
The multistage PIC scheme originally proposed by Varanasi
and Aazhang in [2] and several other schemes considered
in the literature (e.g., [3]) are of this type. On the other
hand, MAI estimates can be obtained using the soft values
of the decision statistics from the previous stage, in which
case the PIC is termed as linear PIC (LPIC) [4],[5]. LPICs
have the advantages of implementation simplicity, analytical
tractability, and good performance under certain conditions.

In a conventional LPIC, an estimate of the MAI for a desired
user in a stage is obtained using all the other users’ soft
outputs from the previous stage. It is likely that these MAI
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estimates are inaccurate due to poor channel conditions (e.g.,
high interference, deep fades, etc.). Under such conditions,
the cancellation can become ineffective to an extent that it
may be better not to do cancellation. In fact, it has been
known that the conventional LPIC performs worse than the
MF detector (where no cancellation is done) at low SNRs,
due to the poor accuracy of the MAI estimates at low SNRs.
This can be alleviated by properly weighing the MAI estimates
before cancellation [5]. A key question is how to choose the
weights for different cancellation stages. An intuitive approach
is to keep the value of the weight low at the early stages and
large at the later stages, as done in [5], because the MAI
estimates can be more reliable in the later stages since much
of the interference would have been cancelled by then. A
more formal approach, which we adopt in this letter, is to
obtain appropriate functions (e.g., expressions for interference
variance or SIR) which when optimized will give the optimum
weights.

The issue of the choice of weights in LPIC has been
addressed in [6]-[8], but only for AWGN channels. A new
contribution in this letter is that we derive closed-form expres-
sions for optimum weights for different stages in an LPIC on
Rayleigh fading and diversity channels. Also, our approach to
obtain the optimum weights is that we derive exact expressions
for the average SIR at the output of the cancellation stages of
the weighted LPIC, and maximize these SIR expressions to
obtain the optimum weights for the different stages. In fact, we
obtain exact closed-form expressions for the optimum weights
for each stage of the LPIC. We show that the proposed SIR-
optimized weighted LPIC clearly outperforms the MF detector
and the conventional LPIC, in both near-far as well as non-
near-far scenarios on Rayleigh and diversity channels.

II. SYSTEM MODEL

Consider a K-user synchronous CDMA system where the
received signal is given by

y(t) =
K∑

k=1

Akhkbksk(t) + n(t), t ∈ [0, T ], (1)

where bk ∈ {+1,−1} is the bit transmitted by the kth
user, T is one bit duration, Ak is the transmit amplitude
of the kth user’s signal, hk is the complex channel fade
coefficient corresponding to the kth user, sk(t) is the unit
energy spreading waveform of the kth user defined in the
interval [0, T ], i.e.,

∫ T

0
s2k(t)dt = 1, and n(t) is the white

Gaussian noise with zero mean and variance σ2. The fade
coefficients hk’s are assumed to be i.i.d complex Gaussian
r.v’s (i.e., fade amplitudes are Rayleigh distributed) with zero
mean and E[h2

kI ] = E[h2
kQ] = 1, where hkI and hkQ are the
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real and imaginary parts of hk. The channel fade is assumed
to remain constant over one bit interval.

We consider a multistage LPIC at the receiver. The first
stage is a conventional MF, which is a bank of K correlators,
each matched to a different user’s spreading waveform. The
received vector y(1) at the output of the MF stage (the
superscript (1) in y(1) denotes the first stage) is given by

y(1) =
[
y
(1)
1 , y

(1)
2 , · · · , y(1)

K

]
, (2)

where y(1)
k is the kth user’s MF output, given by

y
(1)
k = Akhkbk +

K∑
j=1, j �=k

ρjkAjhjbj + nk, (3)

where ρjk is the cross-correlation coefficient between the
jth and kth users’ spreading waveforms, given by ρjk =∫ T

0 sj(t)sk(t)dt, |ρjk| ≤ 1, and nk’s are complex Gaussian
with zero mean and E[njn

∗
k] = 2σ2 when j = k and

E[njn
∗
k] = 2σ2ρjk when j �= k. The received vector

y(1) (without hard decision) is used for MAI estimation and
cancellation in the second stage.

A. Conventional LPIC

In a conventional LPIC, an estimate of the MAI for a
desired user in the current stage is obtained using all the other
users’ soft outputs from the previous stage for cancellation
in the current stage. More specifically, the MAI estimate
for the desired user k in stage m, m > 1, is obtained by
multiplying y(m−1)

j with ρjk for all j �= k and summing them

up, i.e.,
∑

j �=k ρjky
(m−1)
j is the MAI estimate for the desired

user k in stage m. Accordingly, the bit decision for the kth
user after interference cancellation in the mth stage, b̂(m)

k , in
conventional LPIC is given by

b̂
(m)
k = sgn

⎛
⎝Re

(
h∗k
(
y
(1)
k −

K∑
j=1, j �=k

ρjky
(m−1)
j

))⎞⎠ . (4)

III. WEIGHTED LPIC

In a weighted PIC, the MAI estimate of the desired user
k in stage m, m > 1, is weighted by a factor p(m)

k before
cancellation. In other words, p(m)

k

∑
j �=k ρjky

(m−1)
j is the

weighted MAI estimate for the desired user k in stage m.
That is, the mth stage output of the desired user k, y(m)

k , is
given by

y
(m)
k = y

(1)
k − p

(m)
k

K∑
j=1, j �=k

ρjky
(m−1)
j . (5)

Note that both the conventional LPIC as well as the MF
detector become special cases of the weighted LPIC for
p
(m)
k = 1, ∀m and p

(m)
k = 0, ∀m, respectively. The bit

decision for the desired user k after weighted interference
cancellation in stage m is

b̂
(m)
k = sgn

(
Re
(
h∗ky

(m)
k

))
. (6)

In the following, we obtain exact expressions for the average
SIRs at the output of the different stages of the weighted LPIC,
which are then used to obtain closed-form expressions for the
optimum weights for the different stages.

A. Average SIR at 2nd Stage Output

The weighted interference cancelled output of the 2nd stage
for the desired user k is given by

y
(2)
k = y

(1)
k − p

(2)
k

K∑
j=1, j �=k

ρjky
(1)
j

= Akhkbk

⎛
⎝1 − p

(2)
k

K∑
j=1, j �=k

ρ2
jk

⎞
⎠+ I2 +N2, (7)

where

I2 =
(
1 − p

(2)
k

) K∑
j=1, j �=k

Ajhjbjρjk

−
K∑

j=1, j �=k

p
(2)
k ρjk

K∑
i=1

i�=j,k

ρijAihibi, (8)

N2 = nk − p
(2)
k

K∑
j=1, j �=k

ρjknj . (9)

The terms I2 and N2 in (7) represent the interference and
noise terms introduced due to imperfect cancellation in using
the soft output values from the MF stage. Since h’s are
complex Gaussian, both I2 and N2 are linear combinations
of Gaussian r.v’s with zero mean. The variance of I2, σ2

I2
,

can be obtained as

σ2
I2 =

K∑
i=1, i�=k

2A2
i

⎛
⎜⎝(1 − p

(2)
k

)
ρik − p

(2)
k

K∑
j=1

j �=k,i

ρjkρij

⎞
⎟⎠

2

, (10)

and the variance of N2, σ2
N2

, can be obtained as

σ2
N2

= 2σ2

⎛
⎜⎝1 − 2p(2)

k

K∑
j=1
j �=k

ρ2
jk +

(
p
(2)
k

)2 K∑
i=1
i�=k

K∑
j=1
j �=k

ρikρjkρji

⎞
⎟⎠ .

(11)

The average SIR of the desired user k at the output of the
second stage, SIR

(2)

k , is then given by

SIR
(2)

k =
2A2

k

(
1 − p

(2)
k

∑K
j=1
j �=k

ρ2
jk

)2

σ2
I2

+ σ2
N2

. (12)

The optimum weight for the second stage, p(2)
k,opt, is chosen to

be the value of p(2)
k that maximizes the average SIR in (12).

In Sec. IV, we present a closed-form expression for p(2)
k,opt.

B. Average SIR at 3rd Stage Output

The soft values of the interference cancelled outputs of all
the other users from the second stage are used to reconstruct
(estimate) the MAI for the desired user k in the third stage.
The MAI estimate is then weighted by the factor p(3)

k and
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cancelled. The third stage output of the desired user k, y(3)
k ,

is then given by

y
(3)
k = y

(1)
k − p

(3)
k

K∑
j=1 ,j �=k

ρjky
(2)
j

= AkhkbkX + I3 +N3, (13)

where

X = 1 − p
(3)
k

K∑
j=1
j �=k

ρ2
jk

(
1 − p

(2)
j

)

+ p
(3)
k

K∑
j=1
j �=k

ρjkp
(2)
j

K∑
i=1

i�=j,k

ρijρki, (14)

I3 =
K∑

l=1
l �=k

ρlkAlblhl

(
1 − p

(3)
k

(
1 − p

(2)
l

K∑
j=1
j �=l

ρ2
jl

))

+ p
(3)
k

K∑
l=1
l �=k

ρlkp
(2)
l

K∑
i=1
i�=l

ρil

K∑
j=1

j �=l,i,k

ρjiAjhjbj

− p
(3)
k

K∑
l=1
l �=k

(
1 − p

(2)
l

)
ρlk

K∑
j=1

j �=l,k

ρjlAjhjbj , (15)

N3 = nk − p
(3)
k

K∑
l=1
l �=k

ρlk

(
nl − p

(2)
l

K∑
j=1
j �=l

ρjlnj

)
. (16)

The terms N3 and I3 are linear combinations of Gaussian r.v’s
with zero mean and variances σ2

N3
and σ2

I3
, given by

σ2
N3

= 2σ2
(
1 + p

(3)
k

K∑
l=1
l �=k

p
(2)
l ρ2

lk

)2

+ 2p(3)
k σ2

K∑
i=1
i�=k

ρik

(
1 + p

(3)
k

K∑
l=1
l �=k

p
(2)
l ρ2

lk

)

·
(
− ρik +

K∑
j=1

j �=k,i

p
(2)
j ρjkρij

)

+
(
p
(3)
k

)2

σ2
K∑

i=1
i�=k

K∑
l=1
l �=k

ρil

(
− ρik +

K∑
j=1

j �=k,i

p
(2)
j ρjkρij

)

·
(
− ρlk +

K∑
j=1

j �=k,l

p
(2)
j ρjkρlj

)
, (17)

σ2
I3 =

K∑
l=1
l �=k

2A2
l

[
p
(3)
k

K∑
j=1

j �=l,k

ρjkp
(2)
j

K∑
i=1

i�=l,j

ρijρli

− p
(3)
k

K∑
j=1

j �=k,l

ρljρjk

(
1 − p

(2)
j

)

+ ρlk

(
1 − p

(3)
k

(
1 − p

(2)
l

K∑
j=1
j �=l

ρ2
jl

))]2

. (18)

The average SIR of the desired user k at the third stage output,
SIR

(3)

k , is then given by

SIR
(3)

k =
2A2

kX
2

σ2
I3

+ σ2
N3

. (19)

The optimum weight for the third stage, p(3)
k,opt, is chosen to

be the value of p(3)
k that maximizes the average SIR in (19).

In the next section, we present a closed-form expression for
p
(3)
k,opt.

IV. OPTIMUM WEIGHTS IN CLOSED-FORM

Expressions for the optimum weights p(2)
k,opt and p(3)

k,opt can

be obtained by differentiating (12) and (19) w.r.t. p(2)
k and p(3)

k ,
respectively, and equating to zero. Accordingly, we obtain the
expression for p(2)

k,opt, in closed-form, as

p
(2)
k,opt =

c1(1 − a1) + e1
−a1(c1 + e1) + c1 + d1 + 2 e1 − σ2(a2

1 − f1)
, (20)

where

a1 =
K∑

j=1
j �=k

ρ2
jk , c1 =

K∑
l=1
l �=k

A2
l ρ

2
lk ,

d1 =
K∑

l=1
l �=k

A2
l

(
K∑

j=1
j �=k,l

ρjkρlj

)2

,

e1 =
K∑

l=1
l �=k

A2
l ρlk

K∑
j=1

j �=k,l

ρjkρlj , f1 =
K∑

j=1
j �=k

ρjk

K∑
i=1
i�=k

ρijρik .

Likewise, the closed-form expression for p
(3)
k,opt can be

obtained as

p
(3)
k,opt =

−2 a2 g2 − f2 − σ2(2 a2 + t2)
a2f2 + 2 e2 + σ2(a2 t2 + 2 v2)

, (21)

where

a2 =
K∑

j=1
j �=k

ρ2
jk

(
1 − p

(2)
j

)− K∑
j=1
j �=k

ρjkp
(2)
j

K∑
r=1

r �=j,k

ρrjρrk ,

e2 =
K∑

l=1
l �=k

A2
l

(
ρ2

lkw
2
2 + (c2 − d2)2 + 2ρlkw2(c2 − d2)

)
,

f2 =
K∑

l=1
l �=k

A2
l

(
− 2ρ2

lkw2 − 2ρlk(c2 − d2)
)
, g2 =

K∑
l=1
l �=k

A2
l ρ

2
lk ,

w2 = 1 − p
(2)
l

K∑
q=1
q �=l

ρ2
ql , c2 =

K∑
j=1

j �=k,l

ρjkρlj

(
1 − p

(2)
j

)
,

d2 =
K∑

j=1
j �=k,l

ρjkp
(2)
j

K∑
r=1

r �=j,l

ρrjρrl , t2 = 2(u1 + z1) ,

z1 =
K∑

i=1
i�=k

ρik

(
− ρik +

K∑
j=1

j �=k,i

p
(2)
j ρjkρij

)
,
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Fig. 1. Average SIR at the 2nd (m = 2) and the 3rd stage (m = 3) outputs
of the desired user (k = 1) as a function of the weight, p
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k

. K = 15.
Processing gain = 64. Random spreading sequences. Average SNR per bit =
10 dB.
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Fig. 2. Optimum weights for the 2nd and 3rd stages, p
(2)
k,opt

and p
(3)
k,opt

,
for the desired user k = 1, as a function of correlation coefficient, ρ. K = 5
equi-correlated users (ρij = ρ, ∀ i, j) with equal transmit amplitudes (Aj =
A,∀ j) and no noise (σ2 = 0).

u1 =
∑
l=1
l �=k

p
(2)
l ρ2

lk , v2 = u2
1 + 2u1z1 + t1 ,

t1 =
K∑

i=1
i�=k

K∑
l=1,
l �=k

ρil

(
− ρik +

K∑
j=1

j �=k,i

p
(2)
j ρjkρij

)

·
(
− ρlk +

K∑
j=1

j �=k,l

p
(2)
j ρjkρlj

)
.

As can be seen from (20) and (21), the complexity of
optimum weights calculation for second and third stages, in
terms of number of multiplication/addition operations, is of
order K2 and K4, respectively. In Fig. 1, using Eqns. (12)
and (19), we plot the average SIR at the second (m = 2) and
third (m = 3) stage outputs of the weighted LPIC for the

desired user (k = 1), as a function of the weight p(m)
k for

the case of K = 15 users using random spreading sequences
with a processing gain of 64 and an average SNR per bit of
10 dB. It is noted that the maximum interference cancelled
output SIR increases as the number of stages increases

(
i.e.,

SIR
(3)

k,opt > SIR
(2)

k,opt

)
, which is intuitively expected. Also, it

can be seen from (20) and (21) that the optimum weights
depend on the correlation coefficients (ρij’s), number of
users (K), and the SNRs (Aj’s and σ2). It can be further
noted that, since the MAI estimates obtained using the soft
outputs are imperfect, the optimum weights can be greater than
unity depending on the values of the above parameters. For
example, for the case of equi-correlated users (ρij = ρ, ∀ i, j)
with equal transmit amplitudes (Aj = A, ∀j) and ignoring
thermal noise (σ2 = 0), it can be shown by simplifying
(20) that p(2)

k,opt = [1 + (K − 2)ρ]−1. This implies that the

optimum weight p(2)
k,opt is i) equal to 1 for ρ = 0 and

also for K = 2 users1, ii) 0 < p
(2)
k,opt < 1 for positive

correlation (i.e, 0 < ρ ≤ 1), and iii) p(2)
k,opt > 1 for negative

correlation values in the range −(K − 2)−1 < ρ < 0.
Likewise, for the same system scenario in the above, it can
be shown by simplifying (21) that, for the 3rd stage, p(3)

k,opt =[
1 + ρ

{
(1 − p

(2)
k,opt)(K − 2) − p

(2)
k,opt(K

2 − 3K + 3)ρ
}]−1

.

From the above expression for p(3)
k,opt, it can be seen that

p
(3)
k,opt > 1 for 0 < ρ ≤ 1. In Fig. 2, we plot the variation of

p
(2)
k,opt and p(3)

k,opt as a function of ρ, which shows the regions
where the optimum weights can be larger than 1 in the above
example. This helps to explain why p(3)

k,opt is larger than 1 in
Fig. 1.

A. Probability of Bit Error

The probability of bit error for the desired user k at the
output of the mth stage can be obtained in terms of the
optimized SIR as

P
(m)
k =

1
2

⎛
⎝1 −

√√√√ SIR
(m)

k,opt

1 + SIR
(m)

k,opt

⎞
⎠ . (22)

where SIR
(m)

k,opt is the output SIR when the optimum weight

p
(m)
k,opt is used.
Suppose we consider receive diversity with L equal-energy

i.i.d paths. In this case, cancellation is done on each path and
the resulting outputs are coherently combined. Accordingly,
the bit decision for the desired user k in stage m is given by

b̂
(m)
k = sgn

(
Re

(
L∑

l=1

hl
k

∗
y
(m)l

k

))
, (23)

where hl
k denotes the kth user’s complex channel coefficient

on the lth receive antenna path, and y
(m)l

k denotes the kth
user’s interference cancelled output of the mth stage on the

1It is easy to see that for the system with two equi-correlated users and
no thermal noise, the other user interference is perfectly cancelled and hence
the optimum weight is unity in that case.
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LPIC on flat Rayleigh fading channels (L = 1). K = 20. Processing gain =
64. Random spreading sequences. No near-far effect: A1 = A2 = · · · = AK .

lth receive antenna path, given by

y
(m)l

k = y
(1)l

k − p
(m)l

k

K∑
j=1, j �=k

ρjky
(m−1)l

j . (24)

On each receive antenna path, the expressions for the variances
due to interference, σ2

Im
, and due to noise, σ2

Nm
, remain

the same as those for the flat fading case given before. The
probability of bit error for the desired user k with L equal-
energy diversity paths can be obtained as (similar to obtaining
Eq. 3.140 in [1])

P
(m)
k =

1
2

⎡
⎣1 −

√√√√ SIR
(m)

k,opt

1 + SIR
(m)

k,opt⎛
⎝1 +

L−1∑
n=1

1 · 3 · 5 · · · (2n− 1)

n!2n
(
1 + SIR

(m)

k,opt

)n

⎞
⎠
⎤
⎦ . (25)

V. RESULTS AND DISCUSSIONS

In this section, we present the BER performance of the
SIR-optimized weighted LPIC scheme on Rayleigh fading and
diversity channels. In Fig. 3, we illustrate a BER performance
comparison of the SIR-optimized weighted LPIC as a function
of average SNR per bit with that of the MF detector as well as
the conventional LPIC (where the weight is taken to be unity
in all stages) on flat Rayleigh fading channels (L = 1) for
K = 20 users with no near-far effect (i.e., A1 = A2 = · · · =
AK). In all the numerical results presented here, we assign
different random spreading sequences of processing gain 64
to different users, and the cross-correlation coefficients are
computed for these random sequences. User 1 is taken to
be the desired user. The BER plots for the SIR-optimized
weighted LPIC are computed using (22) with the appropriate
optimized SIR values. Figure 4 shows a similar performance
comparison for diversity channels for L = 2, where the BER
for the SIR-optimized weighted LPIC is computed using (25).
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Fig. 4. Comparison of the BER performance of the SIR-optimized weighted
LPIC as a function of SNR with that of the MF detector and the conventional
LPIC on diversity channels (L = 2). K = 20. Processing gain = 64. Random
spreading sequences. No near-far effect: A1 = A2 = · · · = AK .
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Fig. 5. Comparison of the BER performance of the SIR-optimized weighted
LPIC as a function of the number of users, K , with that of the MF detector
and the conventional LPIC on diversity channels (L = 2). Processing gain =
64. Random spreading sequences. Average SNR per bit = 15 dB. No near-far
effect: A1 = A2 = · · · = AK .

We have obtained the BER through simulations as well (we
found close match between analysis and simulation results,
which is expected since the expressions are exact and there
is no approximation involved). The decorrelating detector
performance as well as the single user performance are also
shown for comparison.

From Figs. 3 and 4 the following observations can be
made. At high SNRs, the 2nd stage of the conventional LPIC
performs better than the MF detector, due to accurate MAI
estimates in good channel conditions (i.e., high SNRs). How-
ever, at low SNRs (SNRs < 9 dB in Fig. 3), the 2nd stage of
the conventional LPIC performs poorer than the MF detector,
which happens due to poor accuracy of the MAI estimates
in the early stages of the PIC, particularly when channel
conditions are poor (i.e., at low SNRs). This performance
behavior improves in the 3rd stage of the conventional LPIC
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Fig. 6. Comparison of the BER performance of the SIR-optimized weighted
LPIC as a function of the number of users, K , with that of the MF detector
and the conventional LPIC on diversity channels (L = 2). Processing gain
= 64. Random spreading sequences. Average SNR per bit = 15 dB. Near-far
effect: users 2 & 4 transmit with 4 times more amplitude than other users.

which performs better than the MF detector for all SNRs > 0
dB. However, it is noted that the SIR-optimized weighted
LPIC clearly outperforms both the MF detector as well as
the conventional LPIC. In fact, even the 2nd stage of the SIR-
optimized weighted LPIC outperforms the 3rd stage of the
conventional LPIC, and the performance of the 3rd stage of the
SIR-optimized LPIC tends closer to that of the decorrelating
detector.

Figure 5 illustrates the BER performance comparison of the
SIR-optimized weighted LPIC as a function of the number

of users K with that of the MF detector as well as the
conventional LPIC, for L = 2 at an average SNR per bit of 15
dB when there is no near-far effect (A1 = A2 = · · · = AK ).
Figure 6 presents such a comparison in the presence of near-
far effect where users 2 and 4 transmit with 4 times more
amplitude than the other users (i.e., A2/A1 = A4/A1 = 4, A1 =

A3 = A5 = · · · = AK). From Figs. 5 and 6, we observe that the
SIR-optimized weighted LPIC clearly performs better than the
MF detector and conventional LPIC in both in near-far as well
as non-near-far conditions. Under these system conditions, the
third stage of the SIR-optimized weighted LPIC is found to
perform quite close to that of the decorrelating detector.
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