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Abstract—In this paper, we propose a multiple-input multiple-
output (MIMO) receiver algorithm that exploits channel hardening
that occurs in large MIMO channels. Channel hardening refers to
the phenomenon where the off-diagonal terms of the HH

H matrix
become increasingly weaker compared to the diagonal terms as
the size of the channel gain matrix H increases. Specifically,
we propose a message passing detection (MPD) algorithm which
works with the real-valued matched filtered received vector
(whose signal term becomes H

T
Hx, where x is the transmitted

vector), and uses a Gaussian approximation on the off-diagonal
terms of the H

T
H matrix. We also propose a simple estimation

scheme which directly obtains an estimate of H
T
H (instead

of an estimate of H), which is used as an effective channel
estimate in the MPD algorithm. We refer to this receiver as the
channel hardening-exploiting message passing (CHEMP) receiver.
The proposed CHEMP receiver achieves very good performance in
large-scale MIMO systems (e.g., in systems with 16 to 128 uplink
users and 128 base station antennas). For the considered large
MIMO settings, the complexity of the proposed MPD algorithm is
almost the same as or less than that of the minimum mean square
error (MMSE) detection. This is because the MPD algorithm does
not need a matrix inversion. It also achieves a significantly better
performance compared to MMSE and other message passing
detection algorithms using MMSE estimate of H.

Keywords – Large-scale MIMO systems, channel hardening, message

passing, detection, channel estimation.

I. INTRODUCTION

Wireless communication systems using multiple-input multiple-

output (MIMO) configurations with a large number of antennas

have attracted a lot of research attention [1],[2]. These systems

can achieve high spectral and power efficiencies. An emerging

architecture for large-scale multiuser MIMO communications is

one where the base station (BS) is equipped with a large number

of antennas and the user terminals are equipped with one

antenna each. A key requirement on the uplink (user terminal

to BS link) in such large-scale MIMO systems is to achieve

reduced channel estimation, detection and decoding complex-

ities at the BS receiver to enable practical implementation,

while maintaining good performance. When the number of BS

antennas is much larger than the number of uplink users (i.e.,

low system loading factors), linear detectors like the minimum

mean square error (MMSE) detector are good in terms of both

complexity and performance [3].

Message passing on graphical models is a promising low-

complexity high-performance approach for signal processing

in large dimensions [4]. Decoding of turbo/LDPC codes, and

equalization/detection are popular examples of the use of mes-

sage passing algorithms in communications [5]. In [6], a MIMO

detection algorithm based on approximate message passing on a

factor graph is presented. The message passing algorithm in [7]

uses a different approach. It obtains a tree that approximates the

fully-connected MIMO graph and performs message passing on

this tree.

In this this paper, we propose a promising low-complexity

receiver for large-scale MIMO systems. The receiver is based

on message passing. The novelty in the proposed receiver lies

in the exploitation of the ‘channel hardening’ phenomenon that

occurs in large MIMO channels [8]-[11]. Channel hardening

refers to the phenomenon where the off-diagonal terms of

the HTH matrix become increasingly weaker compared to

the diagonal terms as the size of the channel gain matrix

H increases. We exploit this for the purposes of detection

and channel estimation. The proposed receiver, referred to as

the channel hardening-exploiting message passing (CHEMP)

receiver, consists of two components; a message passing detec-

tion (MPD) algorithm and an estimation scheme to obtain an

estimate of HTH. The highlights of our contributions in this

paper can be summarized as follows:

• proposal of the MPD algorithm which works with the

real-valued matched filtered received vector, and uses a

Gaussian approximation on the off-diagonal terms of the

HTH matrix.

• proposal of a simple estimation scheme which directly

obtains an estimate of HTH (instead of an estimate of

H), which is used as an effective channel estimate in the

MPD algorithm.

• less than the MMSE detection complexity (because matrix

inversion is not needed in the MPD algorithm).

• significantly better performance compared to MMSE and

other message passing detection algorithms which use an

MMSE estimate of H.

II. SYSTEM MODEL

Consider a large-scale multiuser MIMO system where K uplink

users, each transmitting with a single antenna, communicate

with a BS having a large number of receive antennas. Let N
denote the number of BS antennas; N is in the range of tens to

hundreds. The ratio α = K/N is the system loading factor. We

consider α ≤ 1 (i.e., K ≤ N ). The system model is illustrated

in Fig. 1. Let Hc ∈ C
N×K denote the channel gain matrix

and Hc
ij denote the complex channel gain from the jth user

to the ith BS antenna. The channel gains Hc
ijs are assumed978-1-4799-3083-8/14/$31.00 c© 2014 IEEE
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Fig. 1. Large-scale multiuser MIMO system model on the uplink.

to be independent Gaussian with zero mean and variance σ2
j ,

such that
∑

j σ
2
j = K. The σ2

j models the imbalance in the

received power from user j due to path loss etc., and σ2
j = 1

corresponds to the case of perfect power control. Let xc denote

the modulated symbol vector, where the jth element of xc

denotes the modulation symbol (assume QPSK modulation)

transmitted by the jth user. Assuming perfect synchronization,

the received vector at the BS, yc, is given by

yc = Hcxc +wc, (1)

where wc is the noise vector. Eqn. (1) can be written in the

real domain as

y = Hx+w, (2)

where

H ,

[
ℜ(Hc) −ℑ(Hc)
ℑ(Hc) ℜ(Hc)

]

,

y ,

[
ℜ(yc)
ℑ(yc)

]

, x ,

[
ℜ(xc)
ℑ(xc)

]

, w ,

[
ℜ(wc)
ℑ(wc)

]

,

ℜ(.) and ℑ(.) denote the real and imaginary parts, respectively.

Note that H ∈ R
2N×2K , y ∈ R

2N , x ∈ {±1}2K , and w ∈
R

2N . The elements of w are modeled as i.i.d. N (0, σ2
n). For

the real-valued system model in (2), the maximum-likelihood

(ML) detection rule is given by

x̂ = argmin
x∈{±1}2K

(y −Hx)T (y −Hx). (3)

When the transmitted bits are equally likely, then the ML

decision rule is same as the maximum a posteriori probability

(MAP) decision rule, given by

x̂ = argmax
x∈{±1}2K

Pr(x | y,H). (4)

The exact computation of (3) and (4) requires exponential

complexity in K. Message passing algorithms can provide

approximate marginalization of the joint distribution in (4) at

low complexities. In Section III, we propose one such message

passing algorithm, whose novelty lies in exploiting the channel

hardening phenomenon that happens in large MIMO channels.

A. Channel hardening in large MIMO channels

Channel hardening refers to the phenomenon where the vari-

ance of the mutual information of the MIMO channel grows

very slowly relative to its mean or even shrink as the number of

antennas grows [8]. Consider a nr×nt MIMO channel. As nr

and nt are increased keeping their ratio fixed, the distribution

of the singular values of the MIMO channel matrix becomes

less sensitive to the actual distribution of the entries of the

channel matrix (as long as the entries are i.i.d.) [9]. This is a

result of the Marčenko-Pastur law [10], which states that if the

entries of a nr×nt matrix H are zero mean i.i.d. with variance

1/nr, then the empirical distribution of eigenvalues of HHH

converges almost surely, as nr, nt →∞ with nt/nr = α, to a

density function [11]

pα(x) =
(

1− 1

α

)+

δ(x) +

√

(x− a)+(b− x)+

2παx
, (5)

where (x)+ = max(x, 0), a = (1−√α)2, and b = (1+
√
α)2.

An effect of the Marčenko-Pastur law is that very tall or very

wide matrices1 are very well conditioned. The law also implies

that the channel “hardens”, i.e., the eigenvalue histogram of a

single realization converges to the average asymptotic eigen-

value distribution.

Channel hardening can bring in several advantages in large

dimensional signal processing. For example, linear detection

in large systems will require inversion of large matrices. In-

version of large random matrices can be done fast using series

expansion techniques [12],[13]. Because of channel hardening,

approximate matrix inversions using series expansion and de-

terministic approximations from limiting distribution become

effective in large dimensions.

An interesting aspect in channel hardening is that as the size

of H increases, the off-diagonal terms of the HHH matrix

become increasingly weaker compared to the diagonal terms,

i.e., H
H
H

nr
→ Int

for nr, nt → ∞ with nt/nr = α. This

phenomenon is pictorially illustrated in Fig. 2, where we have

plotted HTH for the real-valued channel model in (2) for 8×8,

32 × 32, 64 × 64, and 128 × 128 channels. In proposing the

new receiver algorithm in the next section, we will work with

approximations to the off-diagonal terms of the HTH matrix

and estimates of HTH, which are found to achieve very good

performance in large dimensions at low complexities.

III. THE PROPOSED CHEMP RECEIVER

In this section, we present the proposed CHEMP receiver.

The proposed CHEMP receiver has two main components: 1)
a message passing based detection (MPD) algorithm, and 2)
a scheme to estimate HTH. The proposed MPD algorithm

works with the real-valued matched filtered received vector

(whose signal term becomes HTHx), and uses a Gaussian

approximation on the off-diagonal terms of the HTH matrix.

Before we describe the proposed MPD algorithm, we state the

1In practice, the channel matrix in a multiuser system with tens of single-
antenna users and hundreds of BS antennas will become a very tall matrix on
the uplink, and a very wide matrix on the downlink.
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Fig. 2. Magnitude plots of HT
H for 8×8, 32×32, 64×64, and 128×128

MIMO channels.

following lemma which will be used in the development and

analysis of the detection algorithm.

Lemma 1. Let Xi and Yi be Gaussian random variables with

zero mean and variance σ2
x and σ2

y , respectively. Let Zi , XiYi

and Z , 1

n

n∑

i=1

Zi.

• When Xi and Yi are independent, EZi = 0 and EZ2
i =

σ2
xσ

2
y . Then by central limit theorem, for large n, Z ∼

N (0,
σ2

xσ
2

y

n
). When Xi and Yi are i.i.d., Z ∼ N (0,

σ4

x

n
).

• When Xi = Yi, Z is a χ2 random variable of degree n.

EZ = σ2
x and Var(Z) =

2σ4

x

n
.

A. Proposed MPD algorithm

Consider the real-valued system model in (2):

y = Hx+w. (6)

Performing matched filter operation on y, we have

HTy = HTHx+HTw. (7)

From (7) we write the following:

z = Jx+ v, (8)

where

z ,
HTy

N
, J ,

HTH

N
, v ,

HTw

N
. (9)

The ith element of z can be written as

zi = Jiixi +
2K∑

j=1,j 6=i

Jijxj + vi

︸ ︷︷ ︸

,gi

, (10)

where Jij is the element in the ith row and the jth column of J,

xi is the ith element of x, and vi =
2N∑

j=1

Hjiwj

N
is the ith element

Fig. 3. Message passing in the proposed MPD algorithm.

of v. Note that the variable gi defined in (10) denotes the

interference-plus-noise term, which involves the off-diagonal

elements of H
T
H

N
(i.e., Jij , i 6= j). We approximate the gi term

to have a Gaussian distribution with mean µi and variance σ2
i ,

i.e., the distribution of gi is approximated as N (µi, σ
2
i ). By

central limit theorem, this approximation is accurate for large

K, N . The mean and variance in this approximation are given

by

µi = E(gi) =

2K∑

j=1,j 6=i

JijE(xj)

σ2
i = Var(gi) =

2K∑

j=1,j 6=i

J2
ijVar(xj) + σ2

v . (11)

Denoting the probability of the symbol xj as pj , we have

E(xj) = (2pj − 1), Var(xj) = 4pj(1− pj). (12)

Also, note that by Lemma 1, σ2
v =

σ2

n

2N
. Because of the above

Gaussian approximation, the a posteriori probabilities of the

transmitted symbols can be written as

Pr(xi|zi) ∝ exp
( −1
2σ2

i

(zi − Jiixi − µi)
2

)

. (13)

From (13), the log-likelihood ratio (LLR) of xi, denoted by Li,

can be written as

Li = ln
Pr(zi|xi = +1)

Pr(zi|xi = −1)
=

2Jii
σ2
i

(zi − µi). (14)

From (14), the probability of symbol xi, can be written as

pi =
eLi

1 + eLi
. (15)

Message passing: The system is modeled as a fully-connected

graph, where the data symbols in x represent the nodes. There

are 2K nodes in the graph. The message sent from the ith
node to every other node is the probability pi, computed from

(15). Likewise, node i will receive similar messages from every

other node; i.e., node i will receive message pj from node j,

∀j 6= i. Figure 3 illustrates the above message passing schedule.

Note that the computation of the messages pi in (15) requires

the computation of (11) and (14). The algorithm is initialized

with pi = 0.5, ∀i, and message passing is carried out for a

certain number of iterations, after which the algorithm stops.

The values of pis at the end are taken as the soft values of xis.
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Algorithm 1 Proposed MPD algorithm

Require: z , J, σ2
v , ∆

1: Initialize: p0i ← 0.5, i = 1, · · · , 2K
2: for t = 1 to number of iterations do

3: for i = 1 to 2K do

4: µi ←
2K∑

j=1,j 6=i

Jij(2p
t−1

j − 1)

5: σ2
i ←

2K∑

j=1,j 6=i

4J2
ijp

t−1

j (1− pt−1

j ) + σ2
v

6: Lt
i ← 2Jii

σ2

i

(zi − µi)

7: p̃ti ← eLi

1+eLi

8: end for

9: pt ← (1−∆)p̃t +∆pt−1

10: end for

These soft values can be directly fed to the channel decoder in

coded systems. In uncoded systems, a hard estimate of symbol

xi can be obtained as

x̂i =

{
+1 if pi ≥ 0.5
−1 otherwise.

(16)

B. Improving convergence rate

At the end of the tth iteration of the detection algorithm

described above, we obtain the probability of the ith user’s

information bit, pti. The rate of convergence of this sequence

{p0i , p1i , p2i , · · · , pti, · · · } can be improved by certain techniques

including damping. Damping of messages passed in message

passing algorithms is a scheme known to improve the rate of

convergence of iterative algorithms. At the tth iteration, the

message is damped by obtaining a convex combination of the

message computed at the tth iteration and the message at the

(t − 1)th iteration, with a damping factor ∆ ∈ [0, 1). Thus, if

p̃ti is the computed probability at the tth iteration, the message

at the end of tth iteration is

pti = (1−∆)p̃ti +∆pt−1

i . (17)

A listing of the proposed MPD algorithm with damping is given

in Algorithm 1.

C. Complexity comparison between MPD and MMSE

The computational complexity of the MPD algorithm is as

follows. The complexity (in number of real operations) required

to compute (11) and (15) is of order O(K2). The complexities

of computing z and J are of orders O(NK) and O(NK2),
respectively. So, the total complexity of the proposed MPD is

O(NK2), which is attractive for large-scale MIMO systems.

In Table I, we present an interesting comparison between the

complexities of MPD and MMSE detection for N = 128, 256,

and K varied from 16 to 256. Since we have used 20 iterations

for MPD in all the BER simulations, we have taken the number

of iterations to be 20 for the calculation of the MPD complexity.

From Table I, the following interesting observations can be

Complexity in no. of real operations ×106

K N = 128 N = 256

MMSE MPD (prop.) MMSE MPD (prop.)

16 0.1775 0.1798 0.3331 0.2964
32 0.7482 0.7496 1.3216 1.1908
64 3.5936 3.2001 5.7890 4.7738
96 9.5846 7.2088 14.4507 10.7489
128 19.7700 12.8146 28.3552 19.1160
256 - - 157.3737 76.5051

TABLE I
COMPARISON BETWEEN THE COMPLEXITIES (IN NUMBER OF REAL

OPERATIONS) OF THE PROPOSED MPD AND THE MMSE DETECTION FOR

DIFFERENT VALUES OF K,N . NUMBER OF ITERATIONS FOR MPD = 20.

0 0.2 0.4 0.6 0.8 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Damping factor, ∆

U
nc

od
ed

 B
E

R

SNR = 12 dB
N=K=64

Fig. 4. Uncoded BER performance of the proposed MPD algorithm as a
function of damping factor ∆. N = K = 64, SNR=12 dB.

made: 1) for large N (e.g., N = 256), MPD complexity is

less than MMSE complexity. This is because MPD needs only

matrix multiplication and not matrix inversion, whereas MMSE

detection needs both matrix multiplication and inversion. 2) for

N = 128, the MPD complexity for K = 64, 96, 128 is less than

the MMSE complexity. For K = 16, 32, the MPD complexity is

almost the same as (marginally higher than) MMSE complexity,

because the number of iterations (= 20) is comparable with K
(= 16, 32). Also, MPD performs better than MMSE detection,

and achieves close to optimal detection performance for large

K,N , and different system loading factors. We will see this

performance advantage of MPD next.

D. BER performance of MPD

In this subsection, we present the uncoded BER performance

of MPD obtained through simulations for different system

parameter settings. We will now assume perfect knowledge H.

We will relax this assumption later. First, in Fig. 4, we plot

the uncoded BER of MPD at an average SNR of 12 dB for

N = K = 64 for various values of the damping factor ∆.

The number of message passing iterations used is 20. From

this figure, we observe that a damping factor of ∆ = 0.33 is

optimal. This value of ∆ is found to give good performance

for other values of system parameters as well. So we have used

this value of ∆ in all the simulations.

In Fig. 5, we plot the uncoded BER of MPD and MMSE

detector for different values of N (= 4, 8, 16, 32, 64, 128)

for a system loading factor of α = 1. Since optimal detec-

tion performance for such large-dimension systems is hard
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Fig. 5. Uncoded BER performance of the MPD algorithm and the MMSE
detector for N = K = 4, 8, 16, 32, 64, 128.
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Fig. 6. Comparison between the average SNR required to achieve an uncoded
BER of 10−4 in MMSE detection and MPD at different loading factors with
N = 128.

to obtain, we have plotted single-input single-output (SISO)

additive white Gaussian noise (AWGN) channel performance

as a lower bound on the optimum detection performance. From

Fig. 5, it is observed that the performance of MPD improves

for increasing N,K, and moves closer to the SISO-AWGN

performance for large N,K; for e.g., the MPD performance

for N = K = 64, 128 gets very close to SISO-AWGN

performance. It can be also seen that MPD is better than MMSE

detector.

Interestingly, the MPD performance for different loading factors

is better than MMSE detection performance. This is shown in

Fig. 6, where the average SNRs required to achieve an uncoded

BER of 10−4 in MPD and MMSE detection are plotted. It

can be observed from Fig. 6 that the MPD outperforms the

MMSE detection by about 1.2 dB at a loading factor of

α = 0.125. This performance advantage of MPD over MMSE

detection increases for increasing values of α. For example, the

performance advantage of MPD over MMSE detection is 6.5

dB and 12.5 dB for α = 0.75 and α = 1, respectively. This

performance advantage of MPD becomes very attractive given

that MPD complexity is almost same or less than the MMSE

detection complexity (as discussed in Section III-C).

E. Channel estimation for MPD

A key issue in large-scale MIMO systems is the estimation of

channel gains. In conventional approaches, the NK channel

gains in the channel matrix are estimated and used for the

detection of transmitted symbols. Note that in our transformed

system model (8), the influence of the channel on vector z is

through HTH, rather than through H as such. We propose to

exploit this observation on the structure of the system model

(8). Specifically, we propose to directly obtain an estimate of

HTH and use it in the MPD algorithm, rather than obtaining an

estimate of H as done in conventional approaches. We note that

this approach is simple and novel, and it works very well in the

MPD algorithm (as we will see in the performance results). We

present the scheme to obtain an estimate of the HTH matrix

next.

Estimating the HTH matrix:

Note that we have defined J = HTH. We are interested in

obtaining Ĵ, an estimate of J. We assume that the channel is

slowly fading, where the channel matrix H remains constant

over one frame duration (which is taken to be equal to the

coherence time of the channel). The length of one frame is Lf

channel uses. Each frame consists of a pilot part and a data

part. The pilot part consists of K channel uses, and the data

part consists of Lf −K channel uses.

Let Xp = P IK denote the pilot matrix, where in the ith channel

use, 1 ≤ i ≤ K, user i transmits a pilot tone with amplitude

P and the other users remain silent. The received pilot matrix

at the BS is then given by

Yp = HXp +Wp = PH+Wp, (18)

where P =
√
KEs, Es is the average symbol energy, and Wp

is the noise matrix. Using Lemma 1, we obtain an estimate of

the matrix J as

Ĵ =
YT

p Yp

NP 2
− σ2

v

P 2
IK . (19)

An estimate of the vector z is obtained as

ẑ =
YT

p y

NP
. (20)

The estimates Ĵ and ẑ are used as inputs to the MPD algorithm

in place of J and z.

Note on complexity: A key advantage of the above estimation

scheme is its low complexity. The computation of Ĵ and ẑ in

(19) and (20) requires only matrix and vector multiplications.

Note that even when perfect knowledge of H or an estimate

of H is available, similar computations are needed to compute

J and z. Further note that the additional complexity needed to

obtain an estimate of H in the conventional approach is avoided

in our approach.

F. BER performance of the CHEMP receiver

As stated before, we refer to the combination of proposed

MPD algorithm and the channel estimation scheme proposed
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BER of 10−3 in 1) proposed CHEMP receiver, 2) MMSE detector with MMSE
channel estimate, and 3) FG-GAI detector in [6] with MMSE channel estimate,
at different loading factors with N = 128.

in the previous subsection as the CHEMP receiver. Here, we

present the uncoded BER performance of the CHEMP receiver.

The number of iterations used in the MPD algorithm is 20.

We compare the performance of the CHEMP receiver with

two other receivers, namely, 1) MMSE detector with MMSE

channel estimate, and 2) FG-GAI (factor graph with Gaussian

approximation of interference) detector in [6] with MMSE

channel estimate. We note that the FG-GAI detector in [6]

is also a message passing algorithm which used a Gaussian

approximation of interference. But this approximation was done

on the original system model in (2), whereas in the proposed

MPD algorithm, the Gaussian approximation is done on the

matched filtered system model in (8) and the proposed channel

estimation scheme is not applicable for the FG-GAI detection

algorithm in [6].

In Fig. 7, we present an uncoded BER performance comparison

between 1) proposed CHEMP receiver, 2) MMSE detector with

MMSE channel estimate, and 3) FG-GAI detector in [6] with

MMSE channel estimate. It can be seen that the performance of

the proposed CHEMP receiver is significantly better than those

of the MMSE and FG-GAI detectors with MMSE estimate of

the channel. This shows that the proposed approach in CHEMP

receiver is simple and effective in terms of both complexity and

performance.

In Fig. 8 we illustrate a comparison between the the average

SNR required to achieve an uncoded BER of 10−3 in 1)

proposed CHEMP receiver, 2) MMSE detector with MMSE

channel estimate, and 3) FG-GAI detector in [6] with MMSE

channel estimate, at different loading factors with N = 128.

From this figure, we observe that the CHEMP receiver out-

performs the other two receivers. For example, the CHEMP

receiver outperforms the MMSE detector with MMSE channel

estimate by about 0.6 dB to 6 dB for loading factors in the

range of 0.125 to 0.75. Likewise, the performance advantage

of the CHEMP receiver over FG-GAI detector with MMSE

channel estimate is about 0.6 dB to 4 dB for loading factors in

the range of 0.125 to 1.

IV. CONCLUSIONS

We proposed a promising message passing based receiver

(referred to as the ‘CHEMP receiver’) for low complexity

detection and channel estimation in large-scale MIMO systems.

Further, 1) an analysis of the convergence and convergence rate

of the CHEMP receiver, 2) an analytical reasoning as to why

the CHEMP receiver performs better with the proposed channel

estimation scheme, and 3) LDPC code design matched for the

large MIMO channel and the CHEMP receiver, are available in

[14].
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