Name:

Question:	1	2	3	4	5	Total
Points:	6	9	10	6	9	40
Score:						

E1 244 - Detection & Estimation Theory 2018 - Final exam

Instructions

- Write your name on this question sheet.
- Attach your solution sheets to this question sheet and return everything.
- The total time for this test is 3 hours.
- No calculators or electronic aids are permitted.
- Academic dishonesty will not be tolerated.
- 1. Consider sequentially testing the hypotheses

$$H_0: Y_k = N_k, \ k = 1, 2, \dots, \ vs.$$

 $H_1: Y_k = S_k + N_k, \ k = 1, 2, \dots,$

where N_1, N_2, \ldots , are iid $\mathcal{N}(0, 1)$ random variables and S_1, S_2, \ldots , are iid $\mathcal{N}(0, 2)$ random variables, with the N's being independent of the S's.

- (a) (3 points) Design a sequential probability ratio test, SPRT(a, b), such that the test has maximum error probability $max(P_F, P_M) \approx 0.01$, using Wald's approximations.
- (b) (3 points) Find (approximately) the expected stopping times of the test you designed, under both hypotheses. You may use the fact that the Kullback-Leibler divergence between a $\mathcal{N}(\mu_1, \sigma_1^2)$ distribution and a $\mathcal{N}(\mu_2, \sigma_2^2)$ distribution is

$$\log(\sigma_2/\sigma_1) + [(\mu_1 - \mu_2)^2 + \sigma_1^2 - \sigma_2^2]/(2\sigma_2^2).$$

- 2. Suppose X_1, \ldots, X_n are iid samples from the distribution with probability mass function $p_{\theta}(x) = e^{-\theta} (1 e^{-\theta})^{x-1}, x = 1, 2, 3, \ldots$, with $\theta \in (0, \infty)$.
 - (a) (4 points) Find a scalar sufficient statistic for θ . Can you show that it is minimal sufficient?
 - (b) (2 points) Find a method of moments estimator for θ . (You can use $\sum_{x=1}^{\infty} x\lambda^x = \lambda/(1-\lambda)^2$ for $\lambda \in (0,1)$.)

- (c) (3 points) Now assume that θ has the prior probability density $\pi(\theta) = \beta e^{-\beta\theta}$ for $\theta \in (0, \infty)$ and $\pi(\theta) = 0$ otherwise, for some known positive constant β . Find the mode of the posterior distribution of θ (the maximum a posteriori estimator) given X_1, \ldots, X_n .
- 3. You are in charge of estimating the ambient temperature in the IISc campus. To do this, you can read (i.e., make a single measurement) from a temperature sensor on campus (#1). You also have access to two additional temperature sensors, at Malleshwaram (#2) and Hebbal (#3). But due to travel constraints, you can only choose to read from one of them, and output a linear function of the two sensors (IISc and one other) as your final estimate.

Suppose that each location's temperature— X_1 (IISc), X_2 (Malleshwaram) and X_3 (Hebbal) is a random variable with mean 0 (in a suitable scale), and that the covariance matrix of $[X_1, X_2, X_3]$ has the rows [2, -1, 2], [-1, 6, 3] and [2, 3, 5] in order. Moreover, each sensor adds independent noise of mean 0 and variance 1 to the true temperature before outputting its reading.

- (a) (4 points) Compute the best (in mean-square error) linear estimator of X_1 using sensors #1 and #2. What is its mean-square error?
- (b) (4 points) Compute the best (in mean-square error) linear estimator of X_1 using sensors #1 and #3. What is its mean-square error?
- (c) (2 points) Which of the above combinations would you prefer?
- 4. Consider testing the following hypotheses using independent observations $X_1, \ldots, X_n, Y_1, \ldots, Y_n$.

$$H_0: \quad X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$$

$$Y_1, \dots, Y_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1), \quad vs.$$

$$H_1: \quad X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$$

$$Y_1, \dots, Y_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, 1), \quad \mu > 0.$$

- (a) (3 points) What is an optimal level- α test of H_0 versus H_1 when μ equals a fixed $\mu_0 \in (0, \infty)$?
- (b) (3 points) Does there exist a Uniformly Most Powerful (UMP) test of H_0 versus H_1 ? Why/why not?
- 5. Consider the following model for a medical patient's treatment outcome, as a function of the dosage of an administered drug. If the dosage level is x, then the probability that the patient is cured is p, where p and x follow the relationship¹

$$\log \frac{p}{1-p} = \theta_0 + \theta_1 x,$$

with $\theta_0, \theta_1 \in \mathbb{R}$ being unknown parameters.

Suppose a population of patients is divided into m groups of size n each, and each patient in group i is treated with (known) dosage level x_i , for $1 \le i \le m$. At the end of the treatment period, Y_i out of the n patients from group i are observed to be successfully cured, in every group $1 \le i \le m$. Assuming that treatment outcomes for each patient are independent,

(a) (3 points) Write down the probability of seeing the data $(Y_1, \ldots, Y_m) = (y_1, \ldots, y_m)$ under a pair of model parameters (θ_0, θ_1) .

¹also called the *linear logistic* model in statistics/machine learning

- (b) (3 points) Can you find a (non-trivial) sufficient statistic for (θ_0, θ_1) ?
- (c) (3 points) Describe, clearly but briefly, how you would find the maximum likelihood estimate of (θ_0, θ_1) given the observations Y_1, \ldots, Y_n (a closed-form solution is not expected).

(This is called Logistic regression.)