E1 244: Detection and Estimation Theory (2018) Homework 4

- 1. Let X_1, X_2, \ldots, X_n be an iid random sample drawn from a Poisson distribution with parameter $\lambda > 0$, $X_i \sim Poi(\lambda)$. Consider the two unbiased estimators $\overline{X} = \frac{1}{n} \sum_{i=1}^n x_i$, and $S^2 = \frac{1}{n-1} \sum_{i=1}^n x_i^2$, of λ . Which one has lower Mean-Square-Error (MSE)?
- 2. Suppose X_1, \ldots, X_n are iid samples from the Exponential distribution with parameter $\lambda > 0$. Find the Cramér-Rao lower bound for unbiased estimation of λ . Does there exist an unbiased estimator of λ whose variance is equal to the lower bound?
- 3. Suppose X_1, X_2, \ldots, X_n are iid uniform observations on the interval $(\theta, \theta + 1)$, $-\infty < \theta < \infty$.
 - (a) Can you find a sufficient statistic for θ ?
 - (b) Can you find a minimal sufficient statistic for θ ?
- 4. Bayes estimator

Suppose X is a sample from the binomial distribution with parameters $n \in \mathbb{N}$ (known) and $\theta \in [0, 1]$ (unknown). Consider the squared loss function $L(\theta, a) = (\theta - a)^2$ for $\theta, a \in [0, 1]$.

- (a) Find the Bayes estimator, as a function of X, for the squared loss function and the Beta(a, b) prior for $\theta \in [0, 1]$, i.e., $\pi(\theta) = \mathbb{1}\{0 \le \theta \le 1\} \theta^{a-1}(1-\theta)^{b-1}/B(a, b)$. (Use the Internet for properties of the Beta distribution.)
- (b) Compute the risk of the Bayes estimator you found above.
- 5. Linear regression

Suppose the random variables X_1, X_2, \ldots, X_n satisfy

$$X_i = \alpha s_i + \eta_i, \quad i = 1, 2, \dots, n$$

where s_1, s_2, \ldots, s_n are known and fixed constants, $\eta_1, \eta_2, \ldots, \eta_n$ are iid $\mathcal{N}(0, \sigma^2), \sigma^2$ unknown.

- (a) Find a two-dimensional sufficient statistic for (α, σ^2) .
- (b) Find the MLE of α and find its bias. What is the distribution of the MLE?
- (c) Show that $\frac{\sum X_i}{\sum s_i}$ is an unbiased estimator of α . Calculate its variance and compare it with the variance of the MLE of α .
- (d) Show that $\sum (X_i/s_i)$ is also an unbiased estimator of α . Calculate its variance. Finally compare the MSE of all the above estimators of α , in particular can you write an ordering of the corresponding MSEs?

- 6. Show that the family of Binomial(n, p) probability distributions, where $n \in \mathbb{N}$ is a fixed integer and p ranges from 0 to 1, is complete.
- 7. Suppose X_1, \ldots, X_n are iid Ber(p), where 0 .
 - (a) Show that the variance of MLE of p attains the Cramer-Rao lower bound.
 - (b) For $n \ge 4$, show that the product $X_1 X_2 X_3 X_4$ is an unbiased estimator of p^4 . Using this, can you find the best unbiased estimator of p^4 ? (*Hint: Use the Rao-Blackwell theorem to improve the estimator. Observe that the Binomial family is complete.*).
- 8. Gaussian conditioning or 'swiss army knife' lemma
 - (a) Prove the following useful property about Gaussians. Suppose A and B are jointly Gaussian random vectors of dimensions m and n, respectively, with

$$\mathbb{E}[A] = \mu_A, \quad \mathbb{E}[B] = \mu_b,$$

$$\operatorname{Cov}[A] = \Sigma_A \text{ (invertible)}, \quad \operatorname{Cov}[B] = \Sigma_B, \text{ and}$$

$$\operatorname{Cov}[A, B] = \mathbb{E}[(A - \mu_A)(B - \mu_B)^T] = \Sigma_{AB} = \Sigma_{BA}^T$$

Then, the conditional distribution of B given A is Gaussian with mean

$$\mu_{B|A} = \mu_B + \Sigma_{BA} \Sigma_A^{-1} (A - \mu_A)$$

and covariance

$$\Sigma_{B|A} = \Sigma_B - \Sigma_{BA} \, \Sigma_A^{-1} \, \Sigma_{AB}.$$

- (b) If X and Y are jointly Gaussian random variables (dimension 1 vectors), then what can you say about the relationship between (a) the minimum mean-square error estimator of X based on Y and (b) the minimum mean-square error <u>linear</u> estimator of X based on Y?
- 9. Recursive parameter estimation

Suppose X is a zero-mean Gaussian random variable with variance σ_0^2 . At each time instant $k = 1, 2, ..., \text{ let } Z_k = X + V_k$ denote the kth observation of X with independent Gaussian noise $V_k \sim \mathcal{N}(0, \sigma^2)$.

- (a) Find a <u>recursive</u> minimum mean-square error (MMSE) estimator \hat{X}_k of X at each time k, as a function of the fresh observation Z_k and the MMSE estimator \hat{X}_{k-1} at time k-1.
- (b) What is the value of \hat{X}_1 when $\sigma^2 = 0$? Repeat for $\sigma^2 = \infty$.
- 10. Let X, Y_1 and Y_2 be random variables with finite mean and covariance, and denote $\sigma_{AB} = \text{Cov}[A, B]$ for each pair of random variables $A, B \in \{X, Y_1, Y_2\}$. Let $L_{12}^X(Y_1, Y_2)$ denote the best linear mean-squared-error (MSE) estimator of X given Y_1, Y_2 ; likewise, let $L_i^X(Y_i)$ denote the best linear MSE estimator of X given Y_i , i = 1, 2. Suppose $\sigma_{Y_1Y_2} = \mathbb{E}[Y_1] = \mathbb{E}[Y_2] = 0$.
 - (a) Assuming that the 1-step or individual best estimators $L_i^X(Y_i)$, i = 1, 2, along with the mean $\mathbb{E}[X]$, are known, can you express $L_{12}^X(Y_1, Y_2)$ in terms of them?
 - (b) Can you express the MSE of $L_{12}^X(Y_1, Y_2)$ in terms of the given covariances?