Name:

Question:	1	2	3	4	Total
Points:	10	10	5	10	35
Score:					

E1 244 - Detection & Estimation Theory - Mid Term exam

Instructions

- The total time for this test is 1.5 hours.
- Write your name on this question sheet.
- Attach your solution sheets to this question sheet and return everything.
- No calculators or electronic aids are permitted.
- Academic dishonesty will not be tolerated.

Useful formulas and definitions:

- Gaussian probability distribution. The Gaussian probability distribution $\mathcal{N}(\mu, \sigma^2)$ is defined by the probability density function $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}, x \in \mathbb{R}$.
- Bayesian composite hypothesis testing. For the composite hypothesis test $H_0: Y \sim \mathbb{P}_{\theta}, \theta \in \Theta_0$ vs. $H_1: Y \sim \mathbb{P}_{\theta}, \theta \in \Theta_1$, with Θ_0 and Θ_1 disjoint, let a prior distribution be π on $\Theta \equiv \Theta_0 \cup \Theta_1$, and the costs be $C[i, \theta]$ for each hypothesis $i \in \{0, 1\}$ and parameter θ . The Bayes risk of a decision rule $\delta: \Gamma \to \{0, 1\}$ is defined to be the quantity

$$\int_{\Theta} \left(\sum_{i=0}^{1} \mathbb{P}_{\theta}[\delta(Y) = i] C[i, \theta] \right) \pi(\theta) \, d\theta.$$

• Series sums. $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

1. Testing for mixtures

Given two probability distributions P_1 and P_2 , here is how random variables Y_1, \ldots, Y_n are defined to be generated by the <u>mixture</u> of P_1 and P_2 : First, draw $Z \sim \text{Bernoulli}(1/2)$. If Z = 0, then generate $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} P_1$, and if Z = 1, then generate $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} P_2$.

Consider testing if $H_0: Y_1, \ldots, Y_n$ are generated iid Bernoulli(1/2), or $H_1: Y_1, \ldots, Y_n$ are generated by the mixture of Bernoulli(1/4) and Bernoulli(3/4).

- (a) (5 points) Write down a form for the Bayes-optimal test.
- (b) (5 points) Argue briefly (in words) what happens to the test statistic in your answer above, under each hypothesis, when n is large (i.e., why do you expect the test to work?).
- 2. Consider the hypothesis test

$$H_0: Y_1, \dots, Y_n \stackrel{\text{iid}}{\sim} \text{Binomial}(m, \theta_0), \quad \text{vs.}$$
$$H_1: Y_1, \dots, Y_n \stackrel{\text{iid}}{\sim} \text{Binomial}(m, \theta), \quad \theta > \theta_0,$$

where $\theta_0 \in (0, 1)$ and *m* are assumed to be known constants.

- (a) (5 points) For a fixed $\theta > \theta_0$, what is the general form of the Neyman-Pearson optimal test?
- (b) (5 points) Does there exist a Uniformly Most Powerful (UMP) test for θ_0 vs. $\theta > \theta_0$?
- 3. (5 points) Suppose you are looking to detect the linear signal $s_k = \beta k$, k = 1, ..., n, in additive, iid Gaussian noise of mean 0 and variance σ^2 , where $\beta \sigma^2$ are known. Determine the Neyman-Pearson optimal detector and its detection-vs-false alarm probability performance (in terms of the standard normal cdf Φ).
- 4. Composite hypothesis testing

Consider the hypothesis test

$$H_0: X \sim \mathcal{N}(\theta, 1), \theta < 0$$
vs.
$$H_1: X \sim \mathcal{N}(\theta, 1), \theta \ge 0,$$

where θ is assumed to have the $\mathcal{N}(1,1)$ prior distribution. Let the costs be uniform for $\theta < 0$ and $\theta \ge 0$, i.e., for each $i \in \{0,1\}$ and $\theta \in \mathbb{R}$,

$$C[i,\theta] = \begin{cases} 0, & \text{if } (i=0,\theta<0) \text{ or } (i=1,\theta\geq0) \\ 1, & \text{otherwise.} \end{cases}$$

- (a) (5 points) What is the posterior probability distribution of θ given the observation X = x?
- (b) (5 points) What is the Bayes optimal decision rule for the observation X = x?