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E1 244 - Detection & Estimation Theory (2019) Final Exam

Instructions

• This exam has a total of 4 questions with a maximum score of 45 points.
The total time is 3 hours.

• There are partial marks for subquestions, so please attempt as many
parts as possible.

• Write your name at the top of this cover sheet.

• Attach your solution sheets to this cover sheet and return everything
including rough work.

• No class notes, calculators or electronic aids are permitted.

• Academic dishonesty will not be tolerated.

Useful formulas, definitions, etc.

• Generalized Likelihood Ratio Test (GLRT). The GLRT for testing the com-
posite hypotheses H0 : Y ∼ pθ, θ ∈ Λ0 vs H1 : Y ∼ pθ, θ ∈ Λ1 has the form

maxθ∈Λ1
pθ(y)

maxθ∈Λ0
pθ(y)

T η.

• Constrained quadratic minimization. For f(x) = ax2 + bx+ c and u ∈ R,

argmin
x≥u

f(x) = max

{

u, argmin
x∈R

f(x)

}

and

argmin
x≤u

f(x) = min

{

u, argmin
x∈R

f(x)

}

.

• Geometric probability distribution. For 0 ≤ θ ≤ 1, the Geom(θ) distribution
has pmf p[i] = θ(1− θ)i−1, i = 1, 2, . . .

• Negative binomial probability distribution. For r = 1, 2, . . . and 0 ≤ θ ≤ 1,
the NegBin(r, θ) distribution has pmf p[i] =

(

i+r−1
i

)

· θr · (1− θ)i, i = 0, 1, 2, . . .
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1. Mixture testing
Consider testing the hypotheses

H0 : (Y1, . . . , Yn)
iid
∼ Unif([k]), vs.

H1 : (Y1, . . . , Yn) ∼ Pǫ,

where k is a known positive integer, Unif([k]) is the uniform probability distribution
over the alphabet [k] = {1, . . . , k}, ǫ ∈ (0, 1) is known, and Pǫ is the joint probability
distribution of Y1, . . . , Yn defined as follows: First, Z ∼ Unif([k]) is sampled uni-
formly. Then (given Z), Y1, . . . , Yn are sampled iid from the probability distribution
PZ
ǫ over [k], under which each outcome j ∈ [k] has probability

PZ
ǫ [j] =







1
k
+ ǫ, if j = Z

1
k
− ǫ

k−1
, if j ∈ [k] \ {Z}.

(a) (2 points) For a general sequence (y1, . . . , yn) with elements from [k], write
down the probability of the sequence under each hypothesis.

Solution: The probability of (y1, . . . , yn) occurring under H0 is k
−n. The prob-

ability of (y1, . . . , yn) occurring under H1 is

1

k

k
∑

ℓ=1

(

1

k
+ ǫ

)Nℓ
(

1

k
−

ǫ

k − 1

)n−Nℓ

whereNℓ denotes the number of symbols that are equal to ℓ, i.e., Nℓ =
∑n

i=1 1{Yi =
ℓ}.

(b) (3 points) Write down, in the shortest possible way, a Bayes-optimal test
statistic for deciding between H0 and H1. How does it depend on the observed
sequence y1, . . . , yn?

Solution: A Bayes-optimal test must threshold the likelihood ratio statistic

Ln =
p1(y1, . . . , yn)

p0(y1, . . . , yn)

=
1
k

∑k
ℓ=1

(

1
k
+ ǫ
)Nℓ
(

1
k
− ǫ

k−1

)n−Nℓ

k−n

=
1

k

(

1−
ǫk

k − 1

)n k
∑

ℓ=1

(

1 + ǫk

1− ǫk
k−1

)Nℓ

,

which is equivalent to thresholding the statistic

T (y1, . . . , yn) =

k
∑

ℓ=1

(

1 + ǫk

1− ǫk
k−1

)Nℓ

.

Hence, a Bayes-optimal test statistic only depends on the number of symbols
for each alphabet (Nℓ, ℓ = 1, . . . , k) in the sequence y1, . . . , yn.
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(c) (4 points) Suppose k (the alphabet size) is quite large (k ≫ 1), and ǫ ≫ 1
k
.

Explain why the test statistic you devised above should reliably detect the true
hypothesis as n (the sample size) becomes large.
(Hint: Approximate the test statistic in this regime of k and ǫ, and think about
what happens to it under H0 and H1 as n → ∞).

Solution: When k ≫ 1 and ǫk ≫ 1, we can approximate 1 + ǫk ≈ ǫk, k
k−1

≈ 1

and 1− ǫk
k−1

≈ 1, using which

T (y1, . . . , yn) =
k
∑

ℓ=1

(

1 + ǫk

1− ǫk
k−1

)Nℓ

≈
k
∑

ℓ=1

(

ǫk

1− ǫ

)Nℓ

≈
k
∑

ℓ=1

(ǫk)Nℓ .

Under H0, since every alphabet is equiprobable, by the law of large numbers,

T (y1, . . . , yn) ≈
k
∑

ℓ=1

(ǫk)n/k = k (ǫk)n/k , (1)

while under H1, again by the law of large numbers,

T (y1, . . . , yn) ≈
k
∑

ℓ=1

(ǫk)Nℓ ≥ (ǫk)NZ = (ǫk)n(
1

k
+ǫ) = (ǫk)nǫ (ǫk)n/k . (2)

Comparing (1) and (2), as n → ∞, T grows exponentially faster under H1 due
to the presence of the term (ǫk)nǫ in (2) which grows with n, instead of k in (1)
which does not grow with n.

2. Composite hypothesis testing
Consider testing the hypotheses

H0 : Y1, . . . , Yn
iid
∼ N (µ, 1), µ ∈

(

−∞,−
ǫ

2

)

vs.

H1 : Y1, . . . , Yn
iid
∼ N (µ, 1), µ ∈

( ǫ

2
,∞
)

.

(a) (5 points) Write down the form of the Generalized Likelihood Ratio Test (GLRT)
for this problem, in the shortest possible way. What real-valued function of the
observations y1, . . . , yn does the test statistic depend on?
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Solution: The GLRT test statistic is

T (y1, . . . , yn) =
maxµ≥ ǫ

2
pµ(y1, . . . yn)

maxµ≤− ǫ

2
pµ(y1, . . . yn)

=
maxµ≥ ǫ

2

∏n
i=1 exp

(

− (yi−µ)2

2

)

maxµ≤− ǫ

2

∏n
i=1 exp

(

− (yi−µ)2

2

)

=
maxµ≥ ǫ

2
exp

(

−1
2

∑n
i=1(yi − µ)2

)

maxµ≤− ǫ

2
exp

(

−1
2

∑n
i=1(yi − µ)2

)

=
exp

(

−1
2
minµ≥ ǫ

2

∑n
i=1(yi − µ)2

)

exp
(

−1
2
minµ≤− ǫ

2

∑n
i=1(yi − µ)2

) .

The unconstrained minimum of
∑n

i=1(yi − µ)2 over µ ∈ R is achieved at µ∗ =
1
n

∑n
i=1 yi = ȳ, so the GLRT statistic becomes

T (y1, . . . , yn) = exp

{

−
1

2

n
∑

i=1

[

(yi − ȳu)
2 − (yi − ȳl)

2]

}

where ȳu = max
{

ȳ, ǫ
2

}

and ȳl = min
{

ȳ,− ǫ
2

}

. This is further equivalent to
thresholding the test statistic

T2(y1, . . . , yn) = −
1

2n

n
∑

i=1

[

(yi − ȳu)
2 − (yi − ȳl)

2]

=
1

n

n
∑

i=1

(

yi −
ȳu + ȳl

2

)

(ȳu − ȳl)

=

(

ȳ −
ȳu + ȳl

2

)

(ȳu − ȳl) .

The GLRT test statistic thus depends only on the sample mean ȳ = 1
n

∑n
i=1 yi.

(b) (5 points) Sketch graphically the GLRT test statistic vs. the real-valued func-
tion of y1, . . . , yn, that you found above, as clearly as you can.

Solution: We consider three cases for T2 depending on the location of ȳ:

1. ȳ ≤ − ǫ
2
: Here T2 =

(

ȳ −
ǫ

2
+ȳ

2

)

(

ǫ
2
− ȳ
)

= −1
2

(

ȳ − ǫ
2

)2
.

2. ȳ ≥ ǫ
2
: Here T2 =

(

ȳ −
ȳ− ǫ

2

2

)

(

ȳ + ǫ
2

)

= 1
2

(

ȳ + ǫ
2

)2
.

3. − ǫ
2
< ȳ < ǫ

2
: Here T2 = (ȳ − 0) ǫ = ǫȳ.
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− ǫ
2

+ ǫ
2

− ǫ2

2

+ ǫ2

2

ȳ

T2(ȳ)

Linear: ǫȳ Quadratic: 1

2

(

ȳ + ǫ

2

)2

Quadratic: − 1

2

(

ȳ − ǫ

2

)2

3. Geometric distribution estimation
Consider the family of geometric probability distributions {Geom(θ) : θ ∈ [0, 1]}.

(a) (3 points) Is this family complete? Why/why not?

Solution: The geometric family is complete. The pmf of the geometric distri-
bution is of the exponential family form:

pθ(i) =
θ

1− θ
· ei log(1−θ)

with the parameter space θ ∈ [0, 1] ⊂ R containing a 1-dimensional rectangle,
so the family is complete.

(b) (3 points) Based on n iid samples X1, . . . , Xn from Geom(θ), θ ∈ [0, 1], can
you find a sufficient statistic for θ?

Solution: The probability of an iid sequence under Geom(θ) is

pθ(X1, . . . , Xn) =

(

θ

1− θ

)n

· exp

(

log(1− θ)
n
∑

i=1

Xi

)

,

so by the factorization theorem (alternatively, by the exponential family theo-
rem), a sufficient statistic for θ is

∑n
i=1Xi.

(c) (4 points) What is the Fisher information for a single sample? Write down the
Cramér-Rao lower bound for the variance of an unbiased estimator of θ based
on n iid samples from the Geom(θ) distribution.
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Solution: The Fisher information of X ∼ Geom(θ) can be calculated as

−E

[

∂2

∂θ2
log pθ(X)

]

= −E

[

∂2

∂θ2
log θ(1− θ)X−1

]

= −E

[

∂2

∂θ2
{log θ + (X − 1) log(1− θ)}

]

= −E

[

−
1

θ2
−

X − 1

(1− θ)2

]

=
1

θ2
+

1
θ
− 1

(1− θ)2
=

1

θ2(1− θ)
.

Consequently, the Cramér-Rao lower bound for the variance of any unbiased
estimator of θ based on n iid samples from Geom(θ) is the reciprocal of n times
the Fisher information of a single sample: θ2(1− θ)/n.

(d) (3 points) Suppose X1, . . . , Xn are iid samples from Geom(θ), for some θ ∈
[0, 1]. Find the maximum likelihood estimator (MLE) of θ as a function of
X1, . . . , Xn.

Solution: The maximum likelihood estimator is

θ̂ = arg max
0≤θ≤1

pθ(X1, . . . , Xn)

= arg max
0≤θ≤1

θn (1− θ)−n+
∑

n

i=1
Xi

= arg max
0≤θ≤1

n log θ +

(

−n +

n
∑

i=1

Xi

)

log(1− θ)

=
n

∑n
i=1Xi

= (X̄)−1.

(e) (5 points) Suppose X1, . . . , Xn are iid samples from Geom(θ), for some θ ∈
[0, 1]. Find the best unbiased estimator of θ as a function of X1, . . . , Xn. Provide
supporting arguments as clearly as possible.
(Hint: Start with a crude unbiased estimator of θ, then improve it. You can use
the fact that the sum

∑m
i=1(Zi−1), where Zi are iid Geom(θ) random variables,

has the NegBin(m, θ) distribution.)

Solution: An unbiased estimator of θ is W1(X) = 1{X1 = 1} which is a Bernoulli
random variable with mean θ under pθ.

We also have a sufficient statistic T (X) =
∑n

i=1Xi for θ from part (b). Moreover, the
distribution of T (X)− n is a negative binomial distribution with parameters (n, θ),
which can be verified to be an exponential family distribution whose parameter set
is the 1-dimensional rectangle [0, 1]. So T (X) is a complete statistic.

Let us improve the estimator W1 by conditioning on the complete, sufficient statistic
T ; by the Lehmann-Scheffe theorem we know that this must be the best unbiased
estimator of θ.
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To find the exact form of the best unbiased estimator, we calculate, for any integer
t ≥ n,

E
[

W1(X)
∣

∣ T (X) = t
]

= E

[

1{X1 = 1}
∣

∣

n
∑

i=1

Xi = t

]

= P

[

X1 = 1
∣

∣

n
∑

i=1

Xi = t

]

=
P [X1 = 1,

∑n
i=1Xi = t]

P [
∑n

i=1Xi = t]
=

P [X1 = 1,
∑n

i=2Xi = t− 1]

P [
∑n

i=1Xi = t]

=
P [X1 = 1,

∑n
i=2Xi − (n− 1) = t− n]

P [
∑n

i=1Xi − n = t− n]

(a)
=

P [X1 = 1]P [
∑n

i=2Xi − (n− 1) = t− n]

P [
∑n

i=1Xi − n = t− n]

(b)
=

θ ·
(

t−2
t−n

)

θn−1(1− θ)t−n

(

t−1
t−n

)

θn(1− θ)t−n

=
n− 1

t− 1
,

where (a) is by the independence of the Xi and (b) is by using the connection to the
negative binomial distribution. So the best unbiased estimator of θ is n−1∑

n

i=1
Xi−1

.

4. Linear estimation of an autoregressive process
A zero-mean discrete-time process {Xt}

+∞
t=−∞ evolves as

Xt+1 = αXt + βXt−1 +Wt, (3)

where Wt is iid N (0, σ2
1) state noise across time t. The observations from this process

are given by
Yt = Xt + Vt, (4)

where Vt is iid N (0, σ2
2) observation noise across time t. Assume that the system is

steady state (i.e., the process {Xt}t is wide-sense stationary).

(a) (5 points) Can you find the steady state 0-step and 1-step autocorrelations
r0 = Cov(Xt, Xt) and r1 = Cov(Xt+1, Xt), in terms of α, β and σ2

1?
(Hint: Use equation (3) creatively.)

Solution: Multiplying (3) by Xt on both sides and taking expectations gives

r1 = αr0 + βr1, (5)

while squaring (3) and taking expectations gives

r0 = α2r0 + β2r0 + σ2
1 + 2αβr1. (6)

From (5) and (6) we get

r0 =
σ2
1

1− α2 − β2 − 2α2β
1−β

, r1 =
ασ2

1

(1− β)
(

1− α2 − β2 − 2α2β
1−β

) .
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(b) (3 points) Suppose you want to find the best linear MMSE estimate of Xt+1

in terms of the immediately preceding observations Yt and Yt−1. Describe how
you would find the optimal linear coefficients in terms of r0, r1, α, β and σ2

2 .

Solution: Let the best linear MMSE estimate of Xt+1 in terms of Yt and Yt−1

be h1Yt + h2Yt−1. By the Yule-Walker equations,

[

h1

h2

]

=

[

Cov(Yt, Yt) Cov(Yt, Yt−1)
Cov(Yt, Yt−1) Cov(Yt, Yt)

]−1 [
Cov(Xt+1, Yt)
Cov(Xt+1, Yt−1)

]

=

[

r0 + σ2
2 r1

r1 r0 + σ2
2

]−1 [
αr0 + βr1
αr1 + βr0

]

.


