Name:

Question:	1	2	3	4	Total
Points:	9	10	18	8	45
Score:					

E1 244 - Detection & Estimation Theory (2019) Final Exam

Instructions

- This exam has a total of 4 questions with a maximum score of 45 points. The total time is 3 hours.
- There are partial marks for subquestions, so please attempt as many parts as possible.
- Write your name at the top of this cover sheet.
- <u>Attach</u> your solution sheets to this cover sheet and <u>return everything</u> including rough work.
- No class notes, calculators or electronic aids are permitted.
- Academic dishonesty will not be tolerated.

Useful formulas, definitions, etc.

• Generalized Likelihood Ratio Test (GLRT). The GLRT for testing the composite hypotheses $H_0: Y \sim p_{\theta}, \theta \in \Lambda_0$ vs $H_1: Y \sim p_{\theta}, \theta \in \Lambda_1$ has the form

$$\frac{\max_{\theta \in \Lambda_1} p_{\theta}(y)}{\max_{\theta \in \Lambda_0} p_{\theta}(y)} \gtrless \eta.$$

• Constrained quadratic minimization. For $f(x) = ax^2 + bx + c$ and $u \in \mathbb{R}$,

$$\arg\min_{x\geq u} f(x) = \max\left\{u, \arg\min_{x\in\mathbb{R}} f(x)\right\} \text{ and}$$
$$\arg\min_{x\leq u} f(x) = \min\left\{u, \arg\min_{x\in\mathbb{R}} f(x)\right\}.$$

- Geometric probability distribution. For $0 \le \theta \le 1$, the Geom (θ) distribution has pmf $p[i] = \theta(1-\theta)^{i-1}, i = 1, 2, ...$
- Negative binomial probability distribution. For r = 1, 2, ... and $0 \le \theta \le 1$, the NegBin (r, θ) distribution has pmf $p[i] = \binom{i+r-1}{i} \cdot \theta^r \cdot (1-\theta)^i$, i = 0, 1, 2, ...

Apr 30, 2019

1. Mixture testing

Consider testing the hypotheses

$$H_0: (Y_1, \dots, Y_n) \stackrel{\text{nd}}{\sim} \text{Unif}([k]), \quad \text{vs}$$

$$H_1: (Y_1, \dots, Y_n) \sim P_{\epsilon},$$

where k is a known positive integer, Unif([k]) is the uniform probability distribution over the alphabet $[k] = \{1, \ldots, k\}, \epsilon \in (0, 1)$ is known, and P_{ϵ} is the joint probability distribution of Y_1, \ldots, Y_n defined as follows: First, $Z \sim \text{Unif}([k])$ is sampled uniformly. Then (given Z), Y_1, \ldots, Y_n are sampled <u>iid</u> from the probability distribution P_{ϵ}^Z over [k], under which each outcome $j \in [k]$ has probability

$$P_{\epsilon}^{Z}[j] = \begin{cases} \frac{1}{k} + \epsilon, & \text{if } j = Z\\ \\ \frac{1}{k} - \frac{\epsilon}{k-1}, & \text{if } j \in [k] \setminus \{Z\} \end{cases}$$

- (a) (2 points) For a general sequence (y_1, \ldots, y_n) with elements from [k], write down the probability of the sequence under each hypothesis.
- (b) (3 points) Write down, in the shortest possible way, a Bayes-optimal test statistic for deciding between H_0 and H_1 . How does it depend on the observed sequence y_1, \ldots, y_n ?
- (c) (4 points) Suppose k (the alphabet size) is quite large $(k \gg 1)$, and $\epsilon \gg \frac{1}{k}$. Explain why the test statistic you devised above should reliably detect the true hypothesis as n (the sample size) becomes large.

(Hint: Approximate the test statistic in this regime of k and ϵ , and think about what happens to it under H_0 and H_1 as $n \to \infty$).

2. Composite hypothesis testing

Consider testing the hypotheses

$$H_0: Y_1, \dots, Y_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, 1), \quad \mu \in \left(-\infty, -\frac{\epsilon}{2}\right)$$
vs.
$$H_1: Y_1, \dots, Y_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, 1), \quad \mu \in \left(\frac{\epsilon}{2}, \infty\right).$$

- (a) (5 points) Write down the form of the Generalized Likelihood Ratio Test (GLRT) for this problem, in the shortest possible way. What real-valued function of the observations y_1, \ldots, y_n does the test statistic depend on?
- (b) (5 points) Sketch graphically the GLRT test statistic vs. the real-valued function of y_1, \ldots, y_n , that you found above, as clearly as you can.

3. Geometric distribution estimation

Consider the family of geometric probability distributions $\{\text{Geom}(\theta) : \theta \in [0, 1]\}$.

- (a) (3 points) Is this family complete? Why/why not?
- (b) (3 points) Based on *n* iid samples X_1, \ldots, X_n from $\text{Geom}(\theta), \theta \in [0, 1]$, can you find a sufficient statistic for θ ?

- (c) (4 points) What is the Fisher information for a single sample? Write down the Cramér-Rao lower bound for the variance of an unbiased estimator of θ based on n iid samples from the Geom(θ) distribution.
- (d) (3 points) Suppose X_1, \ldots, X_n are iid samples from $\text{Geom}(\theta)$, for some $\theta \in [0, 1]$. Find the maximum likelihood estimator (MLE) of θ as a function of X_1, \ldots, X_n .
- (e) (5 points) Suppose X_1, \ldots, X_n are iid samples from $\text{Geom}(\theta)$, for some $\theta \in [0, 1]$. Find the best unbiased estimator of θ as a function of X_1, \ldots, X_n . Provide supporting arguments as clearly as possible. (Hint: Start with a crude unbiased estimator of θ , then improve it. You can use the fact that the sum $\sum_{i=1}^{m} (Z_i - 1)$, where Z_i are iid $\text{Geom}(\theta)$ random variables, has the NegBin (m, θ) distribution.)

4. Linear estimation of an autoregressive process

A zero-mean discrete-time process $\{X_t\}_{t=-\infty}^{+\infty}$ evolves as

$$X_{t+1} = \alpha X_t + \beta X_{t-1} + W_t, \tag{3}$$

where W_t is iid $\mathcal{N}(0, \sigma_1^2)$ state noise across time t. The observations from this process are given by

$$Y_t = X_t + V_t, \tag{4}$$

where V_t is iid $\mathcal{N}(0, \sigma_2^2)$ observation noise across time t. Assume that the system is steady state (i.e., the process $\{X_t\}_t$ is wide-sense stationary).

- (a) (5 points) Can you find the steady state 0-step and 1-step autocorrelations $r_0 = \text{Cov}(X_t, X_t)$ and $r_1 = \text{Cov}(X_{t+1}, X_t)$, in terms of α , β and σ_1^2 ? (Hint: Use equation (3) creatively.)
- (b) (3 points) Suppose you want to find the best linear MMSE estimate of X_{t+1} in terms of the immediately preceding observations Y_t and Y_{t-1} . Describe how you would find the optimal linear coefficients in terms of r_0, r_1, α, β and σ_2^2 .