E1 244: Detection and Estimation Theory (2019) Homework 3

- 1. Consider the model $Y_k = \theta^{1/2} s_k R_k + N_k$, k = 1, 2, ..., n, where $s_1, s_2, ..., s_n$ is a known signal sequence, $\theta \ge 0$ is a constant, and $R_1, R_2, ..., R_n, N_1, N_2, ..., N_n$ are i.i.d. $\mathcal{N}(0, 1)$ random variables.
 - (a) Consider the hypothesis pair $H_0: \theta = 0$ versus $H_1: \theta = A$, where A is a known positive constant. Describe the structure of the Neyman-Pearson detector.
 - (b) Consider now the hypothesis pair $H_0: \theta = 0$ versus $H_1: \theta > 0$. Under what conditions on s_1, s_2, \ldots, s_n does a UMP test exist?
 - (c) For the hypothesis pair in part (b) with general s_1, s_2, \ldots, s_n , what is a locally optimum detector?
- 2. Consider an observed random n-vector \underline{Y} that satisfies one of the two hypotheses:

$$H_0: \underline{Y} = \underline{N},$$

$$H_1: \underline{Y} = \underline{N} + A\left[(1 - \Theta)\underline{s}^{(0)} + \Theta \underline{s}^{(1)} \right],$$

where $\underline{N} = \mathcal{N}(\underline{0}, \mathbf{I})$; the quantity A is a nonrandom positive scalar; the random parameter Θ is independent of \underline{N} and takes on the values 0 and 1 with equal probabilities; and the signals $\underline{s}^{(0)}$ and $\underline{s}^{(1)}$ are known orthonormal signals.

- (a) Suppose the value of A is known. Find the likelihood ratio between the hypotheses H_0 and H_1 .
- (b) Consider now the composite hypothesis-testing problem:

versus

$$H_0: A = 0,$$

versus
 $H_1: A > 0.$

Find the locally most powerful test of level α . Draw the detector structure.

3. Consider the model

$$Y_k = \theta^{1/2} s_k R_k + N_k, \ k = 1, 2, \dots, n$$
(1)

where s_1, s_2, \ldots, s_n is a known signal sequence, $\theta \ge 0$ is a constant, and R_1, R_2, \ldots, R_n , N_1, N_2, \ldots, N_n are i.i.d. $\mathcal{N}(0, 1)$ random variables

(a) Consider the hypothesis pair,

$$\begin{split} H_{0}:\theta=0,\\ versus\\ H_{1}:\theta=A \end{split}$$

where A is a known positive constant. Describe the structure of the Neyman-Pearson detector.

0,

(b) Consider the hypothesis pair,

$$H_0: \theta =$$

versus

$$H_1: \theta > 0.$$

Under what conditions on s_1, s_2, \ldots, s_n does a UMP exist?

- (c) For the hypothesis pair of part (b) with s_1, s_2, \ldots, s_n general, is there a locally optimum detector? If so find it. If not, describe the generalized likelihood ratio test.
- 4. Consider the following pair of hypotheses concerning a sequence Y_1, Y_2, \ldots, Y_n of independent random variables,

$$\begin{split} H_0: Y_k &\sim \mathcal{N}(0, \sigma^2), \ k = 1, 2, \dots, n \\ versus \\ H_1: Y_k &\sim \mathcal{N}(\mu, \sigma^2), \ k = 1, 2, \dots, n \end{split}$$

where μ is a known constant and $\sigma > 0$ is unknown.

Does there exist a uniformly most powerful test. If so, find it and show that it is UMP. If not, show why and find the generalized likelihood ratio test.

- 5. A <u>rank one signal</u> is a random signal of length n whose mean is zero and whose covariance matrix has rank one, i.e., the covariance matrix Σ_S can be written as $\Sigma_S = \underline{\mathbf{u}} \underline{\mathbf{u}}^T$ where $\underline{\mathbf{u}}$ is a $n \times 1$ vector.
 - (a) Show that the signal $S_k = Ah_k$, k = 1, ..., n, where $(h_k)_{k=1}^n$ is a deterministic sequence and A is a random variable with $\mathbb{E}[A] = 0$ and $\operatorname{var}(A) = \sigma_A^2$, is a rank one signal.
 - (b) Find the form of the Neyman-Pearson detector for a Gaussian rank one signal (a signal of the form defined in the preceding part where, additionally, A is Gaussian) embedded in i.i.d. Gaussian noise of variance σ^2 .
- 6. (a) Consider the hypothesis pair

$$H_0: Y = N,$$

$$H_1: Y = N + S$$

where N and S are independent random variables each having pdf

versus

$$p(x) = \begin{cases} e^{-x}, & x \ge 0\\ 0, & \text{otherwise.} \end{cases}$$
(2)

Find the likelihood ratio between H_0 and H_1 .

- (b) Find the threshold and detection probability for α -level Neyman-Pearson testing in (a).
- (c) Consider the hypothesis pair

$$\begin{array}{ll} H_0:Y_k=N_k, & k=1,\ldots,n\\ versus\\ H_1:Y_k=N_k+S, & k=1,\ldots,n \end{array}$$

where n > 1 and N_1, \ldots, N_n , and S are independent random variables each having the pdf given in (a). Find the likelihood ratio.

(d) Find the threshold for α -level Neyman-Pearson testing in (c).