E1 244: Detection and Estimation Theory (2019) Homework 5

- 1. Suppose X_1, \ldots, X_n are iid samples from the Exponential distribution with parameter $\lambda > 0$. Find the Cramér-Rao lower bound¹ for unbiased estimation of λ . Does there exist an unbiased estimator of λ whose variance is equal to the lower bound?
- 2. Suppose X_1, X_2, \ldots, X_n are iid uniform observations on the interval $(\theta, \theta + 1)$, $-\infty < \theta < \infty$.
 - (a) Can you find a sufficient statistic for θ ?
 - (b) Can you find a minimal sufficient statistic for θ ?
- 3. Bayes estimators I

Suppose X is a sample from the binomial distribution with parameters $n \in \mathbb{N}$ (known) and $\theta \in [0, 1]$ (unknown).

- (a) Find the posterior mean estimate of θ , as a function of X, for the Beta(a, b) prior for $\theta \in [0, 1]$, i.e., $\pi(\theta) = \mathbb{1}\{0 \le \theta \le 1\} \theta^{a-1}(1-\theta)^{b-1}/B(a, b)$. (Search the Internet for properties of the Beta distribution.)
- (b) What is the mean square error of the estimator you found above?
- 4. Bayes estimators II

Suppose X_1, \ldots, X_n are iid Gaussian random variables with <u>unknown</u> mean $\theta \in \mathbb{R}$ and <u>known</u> variance σ^2 .

- (a) Find the posterior distribution of θ given the observations X_1, \ldots, X_n , under the Gaussian prior distribution $\mathcal{N}(\mu, \tau^2)$ for θ .
- (b) Write down the posterior mean estimator under the same prior, as a function of $X_1, \ldots, X_n, \sigma^2, \mu, \tau^2$ and *n*. Is it unbiased for estimating θ ?
- (c) Argue what happens to this estimator as n (the amount of data) tends to ∞ .
- 5. Cauchy Schwarz inequality Prove: For two finite-variance random variables A and B on the same probability space, $E[AB]^2 \leq E[A^2] E[B^2].$
- 6. Fisher information for iid samples Suppose n iid observations X_1, \ldots, X_n , each from the density p_{θ} , define an observation X. Show that the Fisher information of X w.r.t. θ is n times the Fisher information of X_1 w.r.t. θ .

¹Do not worry about verifying the CRLB technical conditions.

7. Linear regression

Suppose the random variables X_1, X_2, \ldots, X_n satisfy

$$X_i = \alpha s_i + \eta_i, \quad i = 1, 2, \dots, n$$

where s_1, s_2, \ldots, s_n are known and fixed constants, $\eta_1, \eta_2, \ldots, \eta_n$ are iid $\mathcal{N}(0, \sigma^2), \sigma^2$ unknown.

- (a) Find a two-dimensional sufficient statistic for (α, σ^2) .
- (b) Find the MLE of α and find its bias. What is the distribution of the MLE?
- (c) Show that $\frac{\sum X_i}{\sum s_i}$ is an unbiased estimator of α . Calculate its variance and compare it with the variance of the MLE of α .
- (d) Show that $\sum (X_i/s_i)$ is also an unbiased estimator of α . Calculate its variance. Finally compare the MSE of all the above estimators of α , in particular can you write an ordering of the corresponding MSEs?
- 8. Suppose X_1, \ldots, X_n are iid Ber(p), where 0 .
 - (a) Show that the variance of MLE of p attains the Cramer-Rao lower bound.
 - (b) For $n \ge 4$, show that the product $X_1X_2X_3X_4$ is an unbiased estimator of p^4 . Using this, can you find the best unbiased estimator of p^4 ? (*Hint: Use the Rao-Blackwell theorem to improve the estimator. Observe that the Binomial family is complete.*).
- 9. Completeness of distributions

Consider the family of exponential probability distributions $\{ Exp(\theta) : \theta > 0 \}$.

- (a) Is this family complete? Why/why not?
- (b) For a single sample $X \sim \text{Exp}(\theta), \theta > 0$, can you find a sufficient statistic for θ ?
- (c) What is the Fisher information for a single sample? For n iid samples?
- (d) Suppose X_1, \ldots, X_n are iid samples from $\text{Exp}(\theta)$, for some $\theta > 0$. Find the best unbiased estimator, as a function of X_1, \ldots, X_n , of the Fisher information of (a) a single sample, and (b) n iid samples.