E1 244: Detection and Estimation Theory (2019) Homework 6

- 1. Suppose X_1, \ldots, X_n are iid samples from $Unif(0, \theta)$, for some $\theta > 0$. Show that the statistic $T(X) = \max_i X_i$ is complete.
- 2. Show that the family of Binomial(n, p) probability distributions, where $n \in \mathbb{N}$ is a fixed integer and p ranges from 0 to 1, is complete.
- 3. Complete sufficient statistics and best unbiased estimation Suppose T(X) is a complete and sufficient statistic, for θ , of the random sample $X \sim f_{\theta}$, $\theta \in \Theta$. Let W(X) be an unbiased estimator for $g(\theta)$, where g is a given function. Is E[W(X)|T(X)] a best unbiased estimator of $g(\theta)$? If yes/not, argue why/why not.
- 4. Gaussian conditioning lemma, or the Gaussian 'swiss army knife' Prove the following. Suppose A and B are jointly Gaussian random vectors of dimensions m and n, respectively, with

$$\mathbb{E}[A] = \mu_A, \quad \mathbb{E}[B] = \mu_b,$$

$$\operatorname{Cov}[A] = \Sigma_A \text{ (invertible)}, \quad \operatorname{Cov}[B] = \Sigma_B, \text{ and}$$

$$\operatorname{Cov}[A, B] = \mathbb{E}\left[(A - \mu_A)(B - \mu_B)^T\right] = \Sigma_{AB} = \Sigma_{BA}^T.$$

Then, the conditional distribution of B given A is Gaussian with mean

$$\mu_{B|A} = \mu_B + \Sigma_{BA} \Sigma_A^{-1} (A - \mu_A)$$

and covariance

$$\Sigma_{B|A} = \Sigma_B - \Sigma_{BA} \Sigma_A^{-1} \Sigma_{AB}.$$

5. Kalman filtering

Consider a sequence of binary random variables $\{X_k\}_{k=0}^{\infty}$ each taking on the values 0 or 1. Suppose that the probabilistic structure of the sequence is such that,

$$P(X_k = x_k | X_0 = x_0, X_1 = x_1, ..., X_{k-1} = x_{k-1}) = P(X_k = x_k | X_{k-1} = x_{k-1})$$

$$\triangleq p_{x_{k-1}x_k}$$

for all integers $k \ge 1$, and for all binary sequences $\{x_k\}_{k=0}^{\infty}$. Consider the observation model

$$Y_k = X_k + N_k, \quad k = 0, 1, 2, ...,$$

where $\{N_k\}_{k=0}^{\infty}$ is a sequence of independent and identically distributed random variables, independent of $\{X_k\}_{k=0}^{\infty}$ and having a marginal probability density function f. For each integer $t \geq 0$, let $\hat{X}_{t|t}$ denote the minimum mean squared error (MMSE) estimate of X_t , given measurements $Y_1, Y_2, ..., Y_t$ and let $\hat{X}_{t|t-1}$ denote the MMSE estimate of X_t , given measurements $Y_1, Y_2, ..., Y_{t-1}$, with $\hat{X}_{0|-1} \equiv E\{X_0\}$. Show that $\hat{X}_{t|t}$ and $\hat{X}_{t|t-1}$ satisfy the joint recursion

$$\begin{split} \hat{X}_{t|t} &= \frac{\hat{X}_{t|t-1}f(y_t-1)}{\hat{X}_{t|t-1}f(y_t-1) + (1-\hat{X}_{t|t-1})f(y_t)}, \quad t \ge 0\\ \text{and} \\ \hat{X}_{t+1|t} &= p_{1,1}\hat{X}_{t|t} + p_{1,0}(1-\hat{X}_{t|t}), \quad t \ge 0 \end{split}$$

with initial condition $\hat{X}_{0|-1} = P(X_0 = 1)$. Can you generalize this result to non-binary sequences satisfying the above property?

6. Recursive parameter estimation

Suppose X is a zero-mean Gaussian random variable with variance σ_0^2 . At each time instant $k = 1, 2, ..., \text{ let } Z_k = X + V_k$ denote the kth observation of X with independent Gaussian noise $V_k \sim \mathcal{N}(0, \sigma^2)$.

- (a) Find a <u>recursive</u> minimum mean-square error (MMSE) estimator \hat{X}_k of X at each time k, as a function of the fresh observation Z_k and the MMSE estimator \hat{X}_{k-1} at time k-1.
- (b) What is the value of \hat{X}_1 when $\sigma^2 = 0$? Repeat for $\sigma^2 = \infty$.
- 7. Let X, Y_1 and Y_2 be random variables with finite mean and covariance, and denote $\sigma_{AB} = \text{Cov}[A, B]$ for each pair of random variables $A, B \in \{X, Y_1, Y_2\}$. Let $L_{12}^X(Y_1, Y_2)$ denote the best linear mean-squared-error (MSE) estimator of X given Y_1, Y_2 ; likewise, let $L_i^X(Y_i)$ denote the best linear MSE estimator of X given $Y_i, i = 1, 2$. Suppose $\sigma_{Y_1Y_2} = \mathbb{E}[Y_1] = \mathbb{E}[Y_2] = 0$.
 - (a) Assuming that the 1-step or individual best estimators $L_i^X(Y_i)$, i = 1, 2, along with the mean $\mathbb{E}[X]$, are known, can you express $L_{12}^X(Y_1, Y_2)$ in terms of them?
 - (b) Can you express the MSE of $L_{12}^X(Y_1, Y_2)$ in terms of the given covariances?
- 8. Kalman filtering without the Gaussianity assumption

Take the Gauss-Markov linear dynamical system considered in class, and replace the word 'independent' with 'uncorrelated' everywhere, e.g., the control sequence $\{U_t\}_{t\geq 0}$ is a sequence of uncorrelated random variables, X_0 is uncorrelated with each U_t and V_s , $s, t \geq 0$, etc.). In other words, we remove all Gaussianity assumptions. Show that each output $\hat{X}_{t|t}$, of the Kalman-Bucy filter, is still the best linear MMSE estimate of the true state X_t , for each time t.

9. Kalman filtering

Consider the observation model:

$$Y_k = N_k + \Theta s_k, \quad k = 1, 2, 3, \dots,$$

where $N_1, N_2, ...$ are i.i.d $\mathcal{N}(0, \sigma^2)$ random variables, $\Theta \sim \mathcal{N}(\mu, \nu^2)$ is independent of $N_1, N_2, ...,$ and $s_1, s_2, ...$ is a known sequence. Let $\hat{\theta}_n$ denote the MMSE estimate of Θ given $Y_1, Y_2, ..., Y_n$. Find recursions for $\hat{\theta}_n$ and for the minimum-mean-squared error, $E\{(\hat{\theta}_n - \Theta)^2, b \}$ by recasting this problem as Kalman filtering problem.