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E1 244 - Detection & Estimation Theory (2019) Midterm Exam

Instructions

• The total time for this test is 1.5 hours.

• Write your name at the top of this cover sheet.

• Attach your solution sheets to this cover sheet and return everything
including rough work.

• No class notes, calculators or electronic aids are permitted.

• Academic dishonesty will not be tolerated.

Useful formulas and definitions:

• Exponential probability distribution. The exponential probability distribution
with mean β > 0 is defined by the probability density function p(x) = 1

β
e−

x
β if x ≥ 0

and p(x) = 0 if x < 0.

• Gaussian probability distribution. The Gaussian probability distributionN (µ, σ2)

is defined by the probability density function p(x) = 1√
2πσ2

e−
x2

2σ2 , x ∈ R.

• log 2 = 0.69.
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1. (8 points) Traffic Intensity Testing
Vehicles arrive at the Yeshwanthpur traffic junction in Bengaluru with independent
inter-arrival times distributed according to the exponential distribution with mean
either 1

2
s. or 1s. depending on whether the type of traffic is ‘heavy’ or ‘light’,

respectively. Suppose you measure the first 10 vehicle inter-arrival times (in s.) to be
0.06, 0.24, 0.17, 0.07, 1.80, 0.25, 1.37, 0.42, 0.48, 0.69. Assuming that both the types
of traffic are equally likely a priori, what would you guess about the traffic type to
minimize the probability of incorrect guessing and why?

Solution: We first compute the optimal Bayes decision rule for the hypotheses

H0 (‘heavy’) : Y1, . . . , Yn
iid∼ p0(y) = 2e−2y

1{y ≥ 0}
vs.

H1 (‘light’) : Y1, . . . , Yn
iid∼ p1(y) = e−y

1{y ≥ 0},

with uniform costs and equal priors.

This must be the likelihood ratio test given by (assuming observations are non-
negative) δ(y) = 1 if and only if

0 ≤ log
p1(y)

p0(y)

= log
n
∏

i=1

e−yi

2e−2yi

=

n
∑

i=1

log
e−yi

2e−2yi
= −n log 2 +

n
∑

i=1

yi.

For the given data,
∑n

i=1 yi = 5.55 < 10 log 2 = 6.9, so this test returns δ(y) = 0
which corresponds to the guess H0 (‘heavy’ traffic).

2. Signal Detection
Consider the signal model

Yk =
√
θ (skRk +Nk) , 1 ≤ k ≤ n,

where s1, . . . , sn is a known signal sequence, θ ≥ 0 is a constant and R1, . . . , Rn,
N1, . . . , Nn are i.i.d. N (0, 1) random variables.

(a) (6 points) Consider the hypothesis pair

H0 : θ =
a

2
vs.

H1 : θ = a,
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where a > 0 is a known constant. Describe the structure of the Neyman-Pearson
optimal detector for given false-alarm level α ∈ (0, 1). Derive its receiver oper-
ating characteristic (ROC) in terms of the standard normal cdf Φ for the signal
sequence s1 = · · · = sn = 1.

Solution: The Neyman-Pearson optimal test statistic is the likelihood ratio

Ln =
p1(Y1, . . . , Yn)

p0(Y1, . . . , Yn)
.

Under H0, each Yk ∼ N (0, as2k/2+ a/2) = N (0, σ2
0k) independently, while under

H1, each Yk ∼ N (0, as2k + a) = N (0, σ2
1k) independently, so

Ln =
n
∏

k=1

1
σ1k

e
−

Y 2
k

2σ2
1k

1
σ0k

e
−

Y 2
k

2σ2
0k

=
n
∏

k=1

1√
2
e
−Y 2

k

(

1

2σ2
1k

− 1

2σ2
0k

)

=
n
∏

k=1

1√
2
e
−

Y 2
k

2a(s2
k
+1)

( 1
1
− 1

1/2)

= 2−n/2 exp

(

1

2a

n
∑

k=1

Y 2
k

s2k + 1

)

.

Note that thresholding this is equivalent to thresholding the statistic T (Y ) =
∑n

k=1
Y 2
k

s2k+1
, which is the sum of weighted squares of independent Gaussian ran-

dom variables under each hypothesis. The optimal Neyman-Pearson detector
uses the threshold η that solves P0[T (Y ) = η] = α, since the distribution of
T (Y ) admits a valid probability density function.

When all the sk = 1, 1 ≤ k ≤ n, a valid test statistic is T̃ (Y ) =
∑n

k=1 Y
2
k , which

is a sum of iid chi-square (square of zero-mean Gaussian) random variables under
each hypothesis. Specifically, under H0, each Yk ∼ N (0, a) ⇔ Yk/

√
a ∼ N (0, 1),

so

P
[

Y 2
k ≤ x

]

= P

[

Yk√
a
∈
[

−
√

x

a
,

√

x

a

]]

= Φ

(
√

x

a

)

− Φ

(

−
√

x

a

)

.

Thus the density of each Yk is

f
(0)
Yk

(x) =
1√
ax

Φ′

(
√

x

a

)

, x > 0

under H0, and similarly

f
(1)
Yk

(x) =
1√
2ax

Φ′

(
√

x

2a

)

, x > 0

under H1. From these expressions, the ROC can be worked out using the n-fold
convolution of probability densities.
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(b) (6 points) Consider the hypothesis pair

H0 : θ =
a

2
vs.

H1 : θ >
a

2
.

Does a Uniformly Most Powerful (UMP) detector exist (why/why not)? What
about a Locally Most Powerful (LMP) detector (why/why not)?

Solution: A calculation similar to that in part (a) shows that the optimal
Neyman-Pearson test for H0 : θ = a/2 vs. H1 : θ = θ′ > a/2 thresholds
the quantity

Ln =

n
∏

k=1

1
σ1k

e
−

Y 2
k

2σ2
1k

1
σ0k

e
−

Y 2
k

2σ2
0k

=

n
∏

k=1

√

a

2θ′
e
−Y 2

k

(

1

2σ2
1k

− 1

2σ2
0k

)

=

n
∏

k=1

√

a

2θ′
e
−

Y 2
k

2(s2
k
+1)

( 1
θ′
− 1

a/2)

=
( a

2θ′

)n/2

exp

(

1

2

(

− 1

θ′
+

1

a/2

) n
∑

k=1

Y 2
k

s2k + 1

)

,

or, equivalently, the statistic
n
∑

k=1

Y 2
k

s2k + 1
.

But this does not depend on θ′, so a Uniformly Most Powerful (UMP) detector
exists.

3. Independence Testing
Suppose you want to determine whether two random variables A and B are indepen-
dent, by observing pairs (A1, B1), (A2, B2), . . . independently sampled from a joint
distribution. More specifically, consider testing the hypotheses

H0 : Ai ∼ N (0, 1), Bi = Ai + Zi, Zi ∼ N (0, 1), Ai ⊥⊥ Zi, i = 1, 2, . . . , n

(not independent)

vs.

H1 : Ai ∼ N (0, 1), Bi ∼ N (0, 2), Ai ⊥⊥ Bi, i = 1, 2, . . . , n

(independent),

where X ⊥⊥ Y denotes that X, Y are independent random variables, and any random
variables with different indices i are assumed independent. Note that the marginal
distributions of Ai and Bi are the same under both the hypotheses.

(a) (3 points) Find the log-likelihood ratio for the i-th observed pair (Ai, Bi) as a
function of Ai and Bi.
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Solution: The log-likelihood ratio for the i-th sample pair is

log
p1(Ai, Bi)

p0(Ai, Bi)
= log

p1(Ai)p1(Bi|Ai)

p0(Ai)p0(Bi|Ai)

= log
p1(Bi)

p0(Bi|Ai)
(since Ai ⊥⊥ Bi under H1)

= log

1√
2
√
2π
e−

B2
i

2·2

1√
2π
e−

(Bi−Ai)
2

2

= log
1√
2
+

1

2

(

(Bi −Ai)
2 − B2

i

2

)

= −1

2
log 2 +

1

2

(

B2
i

2
− 2BiAi + A2

i

)

.

(b) (6 points) Under each hypothesis, find the expectation of the log-likelihood ra-
tio logLn for the whole sequence of observations (A1, B1), (A2, B2), . . . , (An, Bn).

Solution: Under H0:

E0 [logLn] = E0

[

log

n
∏

i=1

p1(Ai, Bi)

p0(Ai, Bi)

]

=
n
∑

i=1

E0

[

log
p1(Ai, Bi)

p0(Ai, Bi)

]

=
n
∑

i=1

E0

[

−1

2
log 2 +

1

2

(

B2
i

2
− 2BiAi + A2

i

)]

(from the previous part)

= −n

2
log 2 +

n

2

(

2

2
− 2 · 1 + 1

)

(since E0[AiBi] = 1)

= −n

2
log 2,

while under H1,

E1 [logLn] = E1

[

log
n
∏

i=1

p1(Ai, Bi)

p0(Ai, Bi)

]

=

n
∑

i=1

E1

[

−1

2
log 2 +

1

2

(

B2
i

2
− 2BiAi + A2

i

)]

(from the previous part)

= −n

2
log 2 +

n

2

(

2

2
− 2 · 0 + 1

)

(since E1[AiBi] = 0)

= −n

2
log 2 + n.

(c) (6 points) Consider the hypothesis test that outputs H1 if the log-likelihood
ratio (logLn) of n observations exceeds a given threshold η ∈ R, and H0 other-
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wise. Suppose the number of pairs of observations (n) is extremely large (think
‘almost ∞’). Argue, using the law of large numbers, why you would expect this
test to detect the true hypothesis reliably, i.e., with very low error.

Solution: The quantity 1
n
logLn = 1

n

∑n
i=1 log

p1(Ai,Bi)
p0(Ai,Bi)

is the average of the n

iid random variables log p1(Ai,Bi)
p0(Ai,Bi)

, i = 1, . . . , n. So by the law of large numbers,

for n large enough and under any hypothesis Hj (j = 0, 1),

logLn = n · 1
n
logLn ≈ n · Ej

[

log
p1(A1, B1)

p0(A1, B1)

]

=

{

−n
2
log 2, j = 0

n
(

1− 1
2
log 2

)

, j = 1.

Since −1
2
log 2 < 0 < 1− 1

2
log 2, the argument above shows that with very high

probability, logLn i very negative or very positive if the true hypothesis is H0

or H1, respectively, which is why one can expect the test to perform reliably.


