E1 245: Online Prediction & Learning Fall 2014
Lecture 10 — Sept 04
Lecturer: Aditya Gopalan Scribe: Prakash Chandra

10.1 Recap

1. (Projected) Online Gradient Descent at time ¢ :

Ve i=wi—1 =NV fimit(wi—1)
wr =[x
K

2. Theorem:
Regret;(POGD) < DG\T

where, D = diameter of convex space K and G = bound on ||gradient||,

3. 0— strongly convex function:

FO) 2 F0) + (71 =x) + 2 lly

10.2 OGD with strongly convex losses

10.2.1 Logarithmic regret with time-varying learning rate
Theorem 1: Let { f;} be 6— strongly convex OGD with time-varying step size: 1, = 1/0; , gives:
G2
Regret;(POGD) < %(1 +logT) (10.1)

Notes: 1. Extra curvature make regret O(+/T) to O(logT).
2. Strong convexity + bounded gradients is weaker than exp-concave.

Proof: start with the same approach as for “DG+v/T”.
let,

T
.
w —argwmellr{l;fr(W)
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g(t)
* ~— * o *112
Siwe) = frw*) < (T fr(we) s we =w) = | lwe —w| (10.2)
hence, .
(g(t),wr —w") = o S [2n:((2), we —w")
. w, —w* 2 —wt 2
= {gl0) i —w) < T gy I T I 2w (103)
U
where, 1, = —

c
use (10.2) together with (10.1) and sum overr = 1,2, ..., T.

T 2 T
¥ 0s)— )] < G Yomet 5 3 | B o
t=1

W*||2

-S5(a)ax G o)r-ae]

where, B, = ||w; —

1/1 1
< —(og(T)+1)+5 | — +) |=——0—
toum) #1045 (-0 ) g Y oo o]
=0

asi—c— ! =ot—0c—o(t—1)=0

N Mi-1
GZ
- (1+log(T))

10.3 Impact of regularizer on FTRL performance

1. FTRL algorithm, regularizer = ||.||> = Gradient descent.
2. OGD N—expert gives regret = Ov/NT.
3. “What’s a good regularizer instead of” for my problem?

T
Regret7"™(u) < R(u) + Y Ui(wi) = filwit))]
=1
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. controlling [f;(wr) — fy(wis1)
= control Regret (general philosophy)

Definition 2: [Lipschitz continuity]
f :— R is Lipschitz continuous w.r.t a norm ||.||g if

|f(x) = fO)| < Lllx —yllo

where, x,y € K

10.3.1 FTRL regret bound with Lipschitz losses + strongly convex regular-
izer

Theorem 3: [FTRL regret w/Lipschitz losses (w.r.t ||.||g) + strongly-convex regularizer]

Suppose fi, f2,.... is such that f; is L,-Lipschitz continuous (w.r.t ||.||g). Let the regularizer R
be o-strongly convex w.r.t the same norm ||.||g.

Then, Vu € K

TL?
Regreth TRE(4) < R(u) — {/nellr(lR(v) + = (10.4)

Let’s apply this(theorem 3) for expert advice problem W /N experts. i.e
K= Ay, f,(n) := (n,Z, = loss vector at time t € RNor € [0, 1])
use entropic regularizer:

Rp(w) := ——H(w) = %Zwﬂog(w)

SO
FTRL = Exp —weight

Let’s first go through the following claim:

Claim 4: R (w) = —H(w) is E—stronger convex over Kg :=w € RY : [|w||; < B w.rt|].||;

Proof:
Lipschit continuity of { f;}
fi(m) = fi(¥) = (Z,m =)
Slr =Ll Z - < 1|7 ¥

Holder’s inequality
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= {f} are 1-Lipschitz continuous w.r.t ||.||;

=Ry is E—strongly convex.

Let’s use this claim (claim 4) for entropic regularizer:

hence, Ry = ERl

|
S0 Ry is —-strong convex over Ay.
n

Apply theorem 3 withL =1, 0 = % in above expert advice with N experts problem setup:

Regret?Xp'Wtsm)(u) <—min R(v)+Tn
veEAN

= max (v)+7Tn
VGAN

Exp-wts(n)(u> S log(N)

= Regret | m +7Tn

log(N :
note that if ) = og; ) then Regrets ™ (y) < \/Tlog(N).

-O(\/Tlog(N)) is the “right scaling” for Exp-wts:
-BOTTOMLINE: choice of regularizer is important:
-Can/should depend on Lipschitz continuity of losses:
-Also depend on structure of K, i.e. how large (w.r.t||.||g)does K look.
e.g for best experts:
diam||~||(K) = diamH_Hl (K) = 0(1)

-But, cost functions are 1-Lip. w.r.t ||.||1 , but v/N-Lip. w.r.t ||.||2 .

Proof of theorem 3:

vt,
-1
D, (w) = Zfs(w) +R(w) (10.5)
s=1
FTRL picks w; such that:
wy = argwmeigq%(w) (10.6)

hence, R is o-strongly convex w.r.t ||.||g
= @, is o-strongly convex w.r.t ||.||o
because adding o-str-cvx 4+ cvx is O-str-cvx
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Let’s use the following lemma:

Lemma 5: if f is o-str-convex and x* = minycg (x)

then f(x) — f(x*) > gHX—X*HE

using lemma 5 and (10.6):

D (wig1) —Pr(wy) > ||Wt+1 wil|B (10.7)

o
D1 (W) = Prgt (Wig1) > 2wt —wil [y (10.8)
adding inequalities (10.7) and (10.8) and using (10.5):

fiwe) = fi(wer1) 2 o[lwe —wia |y

= 0| |wr — w1 |[E < filwe) = fi(wer1) < Le|jwy —wirillg

P
Lipschitz continuity

L
= [w—winllo <= (10.9)
and,
T
Regrett ™R (1) < R(u Z [fe(we) = fr(wrs1)]
<R(u)— ml%R —}—ZL,HW, w1l
=1

from (10.9)

< R(u) — mlnR —i—ZL,

1
hence, L2 > T Zthl L,2

TL?
= RegrethTRE(u) < R(u) —minR(v) + —
vek o
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10.3.2 Different View of FTRL: “Online Mirror Descent’’

Recall FTRL applied to linear costs { f; }.
£:(.)=(Z,.) over K C R? , regularizer Ri

= argminycg[(ws, Z14) + R(w)] where : Z1, =Y Z;
= argmaxyeg [(W, —Z14) — R(w)]

leth:RY — k
h(0) := argmax,,cx[(w,0) — R(w)]
Called “link function” or “prox function”

.. FTRL can equivalently written as:
6 =0and vVt =1,2,3....

(1) predict : w, = h(6;)
(2) update : 6,1 = 6; —Z;

- If dealing with general convex { f; }
We can feed the gradients </ f; (w;)’
i.e. we use linear functions: f; = (\/f;(w;),.)
to get regret:

= Y [fi(x) = fi(w)]

t=1

This generic reduction gives a general algorithm [mirror descent]:

Algorithm:
6,=0
and Vr =1,2,3....

(1) predict : w, = h(6y)
(2) update : 611 = 6; — </ fi(wr)

Geometric Picture: [“Dual” spaces figure:]
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“9 — space” = R w — space'=K

Interpretation: 0 is updated in dual space and prediction is linked/mirrored to the primal space
(K).
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