E1 245: Online Prediction & Learning

Fall 2014

Lecture 10 — Sept 04

Lecturer: Aditya Gopalan Scribe: Prakash Chandra

10.1 Recap

1. (Projected) Online Gradient Descent at time *t*:

$$y_t := w_{t-1} - \eta \bigtriangledown f_{t-1}(w_{t-1})$$
$$w_t := \prod_k y_k$$

2. Theorem:

$$Regret_T(POGD) \le DG\sqrt{T}$$

where, $D = \text{diameter of convex space } K \text{ and } G = \text{bound on } ||gradient||_2$

3. σ – strongly convex function:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\sigma}{2} ||y - x||^2$$

10.2 OGD with strongly convex losses

10.2.1 Logarithmic regret with time-varying learning rate

Theorem 1: Let $\{f_t\}$ be σ - strongly convex OGD with time-varying step size: $\eta_t = 1/\sigma_t$, gives:

$$Regret_T(POGD) \le \frac{G^2}{2\sigma}(1 + \log T)$$
 (10.1)

Notes: 1. Extra curvature make regret $O(\sqrt{T})$ to $O(\log T)$.

2. Strong convexity + bounded gradients is weaker than exp-concave.

Proof: start with the same approach as for " $DG\sqrt{T}$ ". let,

$$w^* = arg \min_{w \in K} \sum_{t=1}^{T} f_t(w)$$

$$f_t(w_t) - f_t(w^*) \le \langle \overline{\nabla f_t(w_t)}, w_t - w^* \rangle - \frac{\sigma}{2} ||w_t - w^*||^2$$
 (10.2)

hence,

$$\langle g(t), w_t - w^* \rangle = \frac{1}{2\eta_t} [2\eta_t \langle (t), w_t - w^* \rangle]$$

$$\Rightarrow \langle g(t), w_t - w^* \rangle \le \frac{\eta_t}{2} ||g(t)||^2 \frac{||w_t - w^*||^2 - ||w_{t+1} - w^*||^2}{2\eta_t}$$
(10.3)

where, $\eta_t = \frac{1}{\sigma t}$

use (10.2) together with (10.1) and sum over t = 1, 2, ..., T.

$$\sum_{t=1}^{T} \left[(w_t) - f_t(w^*) \right] \leq \frac{G^2}{2} \sum_{t=1}^{T} \eta_t + \frac{1}{2} \sum_{t=1}^{T} \left[\frac{\beta_t - \beta_{t+1}}{\eta_t} - \sigma \beta_t \right]$$

where, $\beta_t = ||w_t - w^*||^2$

$$= \frac{G^2}{2} \sum_{t=1}^{T} \left(\frac{1}{\sigma t}\right) + \frac{1}{2} \sum_{t=1}^{T} \left[\left(\frac{1}{e t a_t} - \sigma\right) \beta_t - \frac{1}{\eta_t} \beta_{t+1} \right]$$

$$\leq \frac{G^2}{2\sigma} (\log(T) + 1) + \frac{1}{2} \underbrace{\left(\frac{1}{\eta_1} - \sigma\right)}_{=0} \beta_1 + \sum_{t=0}^{T} \left[\frac{1}{\eta_t} - \sigma - \frac{1}{\eta_{t-1}} \right] \beta_t$$

as
$$\frac{1}{\eta_t} - \sigma - \frac{1}{\eta_{t-1}} = \sigma t - \sigma - \sigma(t-1) = 0$$

$$= \frac{G^2}{2\sigma} (1 + \log(T))$$

10.3 Impact of regularizer on FTRL performance

- **1.** FTRL algorithm, regularizer = $||.||^2 \Rightarrow$ Gradient descent.
- **2.** OGD *N*-expert gives regret = $O\sqrt{NT}$.
- 3. "What's a good regularizer instead of" for my problem?

$$Regret_T^{FTRL}(u) \le R(u) - R(w_1) + \sum_{t=1}^{T} [f_t(w_t) - f_t(w_{t+1})]$$

$$\therefore$$
 controlling $[f_t(w_t) - f_t(w_{t+1})]$
 \Rightarrow control Regret (general philosophy)

Definition 2: [Lipschitz continuity]

 $f:\to \mathbb{R}$ is Lipschitz continuous w.r.t a norm $||.||_{\square}$ if

$$|f(x)-f(y)| \le L||x-y||_{\square}$$

where, $x, y \in K$

10.3.1 FTRL regret bound with Lipschitz losses + strongly convex regularizer

Theorem 3: [FTRL regret w/Lipschitz losses (w.r.t $||.||_{\square}$) + strongly-convex regularizer]

Suppose $f_1, f_2,...$ is such that f_t is L_t -Lipschitz continuous (w.r.t $||.||_{\square}$). Let the regularizer R be σ -strongly convex w.r.t the same norm $||.||_{\square}$.

Then, $\forall u \in K$

$$Regret_T^{FTRL}(u) \le R(u) - \min_{v \in K} R(v) + \frac{TL^2}{\sigma}$$
 (10.4)

Let's apply this(theorem 3) for expert advice problem W/N experts. i.e $K = \triangle_N$, $f_t(\pi) := \langle \pi, Z_t = loss \ vector \ at \ time \ t \in \mathbb{R}^N or \in [0,1]^N \rangle$ use **entropic regularizer:**

$$R_{\eta}(w) := -\frac{1}{\eta}H(w) = \frac{1}{\eta}\sum_{i}w_{i}\log(w_{i})$$

so

$$FTRL \Rightarrow Exp - weight$$

Let's first go through the following claim:

Claim 4: $R_1(w) = -H(w)$ is $\frac{1}{B}$ -stronger convex over $K_B := w \in \mathbb{R}^N_+ : ||w||_1 \le B$ w.r.t $||.||_1$ Proof:

Lipschit continuity of $\{f_t\}$

$$f_t(\pi) - f_t(\Psi) = |\langle Z_t, \pi - \Psi \rangle|$$

$$\leq ||\pi - \Psi||_1 ||Z_t||_{\infty} \leq 1||\pi - \Psi||_1$$
Holder's inequality

- \Rightarrow { f_t } are 1-Lipschitz continuous w.r.t ||.||₁
- $\Rightarrow R_1 \text{ is } \frac{1}{B}\text{-strongly convex.}$

Let's use this claim (claim 4) for entropic regularizer:

hence,
$$R_{\eta} = \frac{1}{\eta} R_1$$

so R_{η} is $\frac{1}{\eta}$ -strong convex over \triangle_N .

Apply theorem 3 with L=1, $\sigma=\frac{1}{\eta}$ in above expert advice with N experts problem setup:

$$Regret_{T}^{Exp\text{-}wts(\eta)}(u) \leq -\min_{v \in \triangle_{N}} R(v) + T\eta$$

$$= \max_{v \in \triangle_{N}} (v) + T\eta$$

$$\Rightarrow Regret_{T}^{Exp\text{-}wts(\eta)}(u) \leq \frac{\log(N)}{n} + T\eta$$

note that if
$$\eta = \sqrt{\frac{\log(N)}{T}}$$
 then $Regret_T^{Exp\text{-wts}(\eta)}(u) \leq \sqrt{T\log(N)}$.

- $-O(\sqrt{Tlog(N)})$ is the "right scaling" for Exp-wts:
- -BOTTOMLINE: choice of regularizer is important:
- -Can/should depend on Lipschitz continuity of losses:
- -Also depend on structure of K, i.e. how large (w.r.t $||.||_{\square}$)does K look. e.g for best experts:

$$diam_{||.||}(K) \simeq diam_{||.||_1}(K) = O(1)$$

-But, cost functions are 1-Lip. w.r.t $||.||_1$, but \sqrt{N} -Lip. w.r.t $||.||_2$.

Proof of theorem 3:

 $\forall t$,

$$\Phi_t(w) = \sum_{s=1}^{t-1} f_s(w) + R(w)$$
(10.5)

FTRL picks w_t such that:

$$w_t = \arg\min_{w \in K} \Phi_t(w) \tag{10.6}$$

hence, R is σ -strongly convex w.r.t $||.||_{\square}$ $\Rightarrow \Phi_t$ is σ -strongly convex w.r.t $||.||_{\square}$ because adding σ -str-cvx + cvx is σ -str-cvx Let's use the following lemma:

Lemma 5: if f is σ -str-convex and $x^* = \min_{x \in K}(x)$ then $f(x) - f(x^*) \ge \frac{\sigma}{2} ||x - x^*||_{\square}^2$

using lemma 5 and (10.6):

$$\Phi_t(w_{t+1}) - \Phi_t(w_t) \ge \frac{\sigma}{2} ||w_{t+1} - w_t||_{\square}^2$$
(10.7)

$$\Phi_{t+1}(w_t) - \Phi_{t+1}(w_{t+1}) \ge \frac{\sigma}{2} ||w_{t+1} - w_t||_{\square}^2$$
(10.8)

adding inequalities (10.7) and (10.8) and using (10.5):

$$f_t(w_t) - f_t(w_{t+1}) \ge \sigma ||w_t - w_{t+1}||_{\square}^2$$

$$\Rightarrow \sigma ||w_t - w_{t+1}||_{\square}^2 \le \underbrace{f_t(w_t) - f_t(w_{t+1}) \le L_t ||w_t - w_{t+1}||_{\square}}_{Lipschitz \ continuity}$$

$$\Rightarrow ||w_t - w_{t+1}||_{\square} \le \frac{L_t}{\sigma} \tag{10.9}$$

and,

$$Regret_{T}^{FTRL}(u) \leq R(u) - R(w) + \sum_{t=1}^{T} [f_{t}(w_{t}) - f_{t}(w_{t+1})]$$

$$\leq R(u) - \min_{v \in K} R(v) + \sum_{t=1}^{T} L_{t} ||w_{t} - w_{t+1}||_{\square}$$

from (10.9)

$$\leq R(u) - \min_{v \in K} R(v) + \sum_{t=1}^{T} L_t \frac{L_t}{\sigma}$$

hence, $L^2 \ge \frac{1}{T} \sum_{t=1}^{T} L_t^2$

$$\Rightarrow Regret_T^{FTRL}(u) \le R(u) - \min_{v \in K} R(v) + \frac{TL^2}{\sigma}$$

10.3.2 Different View of FTRL: "Online Mirror Descent"

Recall FTRL applied to linear costs $\{f_t\}$. $f_t(.) = \langle Z_t, . \rangle$ over $K \subseteq \mathbb{R}^d$, regularizer Ri

$$= \arg\min_{w \in K} [\langle w_t, Z_{1:t} \rangle + R(w)] \text{ where } : Z_{1:t} = \sum_{i=1}^t Z_i$$

 $= \arg\max_{w \in K} [\langle w_t, -Z_{1:t} \rangle - R(w)]$

let
$$h: \mathbb{R}^d \to k$$

$$h(\theta) := arg \max_{w \in K} [\langle w, \theta \rangle - R(w)]$$

Called "link function" or "prox function"

:. FTRL can equivalently written as:

$$\theta_1 = 0$$
 and $\forall t = 1, 2, 3....$

(1)
$$predict : w_t = h(\theta_t)$$

(2)
$$update: \theta_{t+1} = \theta_t - Z_t$$

- If dealing with general convex $\{f_t\}$

We can feed the gradients $\nabla f_t(w_t)$ '

i.e. we use linear functions: $\tilde{f}_t \equiv \langle \nabla f_t(w_t), . \rangle$

to get regret:

$$Regret_T(u) = \sum_{t=1}^{T} [f_t(x_t) - f_t(u)]$$

$$\leq \sum_{t=1}^{t} \left[\left\langle \nabla f_t(x_t), x_t \right\rangle - \left\langle \nabla f_t(x_t), u \right\rangle \right]$$

$$= \sum_{t=1}^{T} [\tilde{f}_t(x_t) - \tilde{f}_t(u)]$$

This generic reduction gives a general algorithm [mirror descent]:

Algorithm:

$$\theta_1 = 0$$

and
$$\forall t = 1, 2, 3....$$

(1)
$$predict : w_t = h(\theta_t)$$

(2)
$$update: \theta_{t+1} = \theta_t - \nabla f_t(w_t)$$

Geometric Picture: ["Dual" spaces figure:]

Interpretation: θ is updated in dual space and prediction is linked/mirrored to the primal space (K).