
E1 245: Online Prediction & Learning Fall 2014

Lecture 11 — September 9
Lecturer: Aditya Gopalan Scribe: Abhinav Das .N.V

11.1 Recap
In the last lecture we analyzed the regret bound for Projected Online Gradient Descent for strongly
convex losses and found that it is of O(log T). Also we studied the regret for Lipschitz loss functions
with convex regularizer for the FTRL which turned out to be O(

√
(log N)*T) by suitably choosing

the value of η . Towards the end we were on a new idea of Online Mirror Descent which is
a different view point of FTRL. With linear cost functions ,ie. ft(x):=〈zt ,x〉, we defined a link
function h : Rd → K

h(θ) = argmaxw∈K[〈w,θ〉−R(w)]

where R is the regularizer .
FTRL is same as
1)θ1 = 0
2)Predict: wt = h(θt)
3)Update: θt+1 = θt− zt

11.2 Geometric view of mirror descent
Let R : Rd → R be a strictly convex function.
ie.∀x 6= y ∈ R & 0≤ λ ≤ 1 : R(λx+(1−λ )y)< λR(x)+(1−λ )R(y)
Even if the domain of the function R is not Rd ,but a convex set K, we can extend it to Rd by
setting R(x) = ∞ ∀x /∈ K

11.2.1 Fenchel dual/Fenchel conjugate
It is defined for the function R : Rd → R, as, ∀θ ∈Rd:R∗(θ) = supw∈Rd [〈w,θ〉−R(w)]
INTUITION:We can represent a convex function f in two ways.
1)As the pairs (x, f (x)) which is the common representation.
2)As the pairs (slope of the tangent,y intercept). Fenchel conjugate is the function that relates
between these two representations. Fig. 11.1 illustrates this idea.
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Fig. 11.1:Representation of a convex function in two different ways

11.2.2 Properties of the Fenchel dual
1)If R is convex and closed then (R∗)∗ = R. In general (R∗)∗ ≤ R.

2)Fenchel-Young inequality

∀θ ,x ∈ Rd :R∗(θ)≥ [〈x,θ〉−R(x)]
It is obvious from the definition of R∗(θ).
In particular if R and R∗are differentiable,the equality will be achieved when x = ∇R∗(θ) or when
θ = ∇R(x)
3)Duality
argmaxx∈Rd(〈x,θ〉−R(x)) = ∇R∗(θ)
argmaxθ∈Rd(〈x,θ〉−R∗(θ)) = ∇R(x)
Let x∗ = argmaxx∈Rd(〈x,θ〉−R(x))

⇒ θ = ∇R(x∗)=∇R(∇R∗(θ))

⇒ (∇R)−1 = ∇R∗ or equivalently (∇R∗)−1 = ∇R

R(x) R∗(θ)
1
2 ||x||

2
2

1
2 ||θ ||

2
2

1
2 ||x||

2
p

1
2 ||θ ||

2
qwhere 1

p +
1
q = 1

∑
d
i=1 x(i)(log(x(i))−1) ∑

d
i=1 eθ(i)

∑
d
i=1 x(i)(log(x(i))+ I∆d(x) log(∑d

i=1 eθ(i))
1
η

R(x) 1
η

R∗(ηθ)

Table 11.1:Some Fenchel dual pairs
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11.2.3 Bregman Divergence
Let R : Rd → R be convex function.
The Bregman Divergence of R is defined as
DR(x,y) = R(x)−R(y)−〈∇R(y),x− y〉 ∀x,y ∈ Rd

We can see that it is the difference between the function value at x and first order Taylor series
approximation of R(x) around y.

11.2.4 Properties of Bregman Divergence
1. For a convex function R, DR(x,y)≥ 0

2. DR+S(x,y) = DR(x,y)+Ds(x,y)

3. DR(u,v)++DR(v,w) = DR(u,w)+ 〈u− v,∇R(w)−∇R(v)〉

4. Bregman projection to a convex set K

∀w ∈ Rd,∃a unique w
′
such that w

′
= argminv∈K(DR(v,w))

We represent this w
′
as ∏R,K(w).

5. Generalised Pythagorean theorem

∀w ∈ Rd and w
′
= ∏R,K(w) , DR(u,w)≥ DR(u,w

′
)+DR(w

′
,w)

6. Bregman Divergence through the dual space

DR(u,w) = DR∗(∇R(u),∇R(v))

7. Gradient of the Bregman Divergence

∇xDR(x,y) = ∇R(x)−∇R(y)

8. Bregman Divergence for a line

Dlinear(x,y) = 0 (This is obvious since first order approximation on a line will not make any
errors.)

11.3 Theorem
Theorem 11.1. For linear cost functions FTRL is equivalent to performing the unconstrained min-
imization over entire Rd and then taking the Bregman projection to the convex decision space.
Formally, let R be a strictly convex function which is the FTRL regularizer.

Φt(x) = ∑
t−1
s=1〈zs,x〉+R(x),then

argminw∈KΦt(w) = ∏Φt ,K(argminw∈Rd(Φt(w)))
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Proof: The first term in the Φt(x) is linear.
⇒ DΦt = DR
Let
w∗t := argminw∈Rd(Φt(w)) ie.w∗t is the universal minimizer.
wt := argminw∈K(Φt(w)) ie.wt is the minimizer in the set K.
w
′
t := ∏Φt ,K(w

∗
t ) ie.w

′
t is the Bregman projection of the universal minimizer to the set K.

By definition, we know that
Φt(wt)≤Φt(w

′
t) (11.1)

Also by definition we have

∇Φt(w∗t ) = 0

⇒ DΦt (w,w
∗
t ) = Φt(w)−Φt(w∗t )

D(w
′
t ,w
∗
t )≤ DΦt (wt ,w∗t )

Φt(w
′
t)−Φt(w∗t )≤Φt(wt)−Φt(w∗t ) (11.2)

(11.1) and (11.2)⇒Φt(wt) = Φ(w
′
t) ie.Bregman projection and the minimizer in K are equal.

Also by strict convexity of Φt this minimizer must be unique.

�

11.3.1 FTRL in dual space
Unconstrained FTRL with linear loss function is according to

w∗t+1 := argminw∈Rd [∑t
s=1〈zs,w〉+R(w)]

⇒ ∑
t
s=1 zs +∇R(w∗t+1) = 0

and ∑
t−1
s=1 zs +∇R(w∗t ) = 0

∇R(w∗t+1) = ∇R(w∗t )− zt
w∗t+1 = ∇R∗(∇R(w∗t )− zt) (Taking the inverse)
From this, constrained FTRL can be seen as
w∗t+1 = ∏R,K(∇R∗(∇R(w∗t )− zt))
We can summarize the mirror descent update as
∀t = 1,2,3 · · ·
1)∇R(w∗t ) = ∇R(w∗t−1)− zt−1 (The reference pont is w∗t−1)
2)wt = ∏R,K(w∗t )

This is also called “Lazy version of OMD”. Here our updation is done in the w∗t space and it is
projected back to K.
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Another type of updation,called as “Active version of OMD”, is also there. But it is not equal to
FTRL.

∀t = 1,2,3 · · ·
1)∇R(yt) = ∇R(wt−1)− zt−1 (The reference pont is wt−1)
2)wt = ∏R,K(yt)

Note:

1)When R(w) = 1
2η
||w||22

a)K = Rd ⇒ Lazy OMD=Active OMD=OGD(η)
b)K (Rd ⇒ Active OMD=Projected OGD
2)When R(w) = 1

η ∑
d
i=1 w(i)(log(w(i))

Lazy OMD=Active OMD=EXP-WTS(η)

Theorem 11.2. [Regret bound for Active version of OMD]
∀u ∈ K RegretT (u)≤ DR(u,w1)−DR(u,wT+1)+∑

T
t=1 DR(wt ,yt+1)

11.4 References
1)Online Learning and Online Convex Optimization By Shai Shalev-Shwartz:Chapter 2-sections-
2.3,2.4,2.6,2.7

http://www.cs.huji.ac.il/˜shais/papers/OLsurvey.pdf

2)Introduction to Online Optimization by Śebastien Bubeck:Chapter 5-sections-5.1,5.2

http://www.princeton.edu/˜sbubeck/BubeckLectureNotes.pdf
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