E1 245: Online Prediction & Learning

Fall 2014

Lecture 13 — September 16

Lecturer: Aditya Gopalan

Scribe: Sayak Ray Chowdhury

13.1 Recall

In the previous lecture, we have seen EXP3 algorithm regarding bandit model of learning i.e online learning with partial information. The original work by Auer et. al. [1] considers a slightly different version of what we have seen. Here we present the algorithm given in [1] and denote it by EXP3-ORIG.

EXP3-ORIG

Parameter:
$$\eta \in [0, 1]$$

Initialize: $p_1 = Uniform\{1, 2, ..., N\}; \tilde{L}_0 = \mathbf{0} \in \mathbb{R}^N$
At each time $t = 1, 2, 3, ..., T$
1. Sample $I_t \sim p_t$, where $p_t \equiv (p_{i,t})_{i=1}^N$
For each $i = 1, 2, ..., N$
2. $\tilde{l}_{i,t} := \frac{l_{i,t}}{p_{i,t}} \mathbb{1}\{I_t = i\}$, where $l_t \equiv (l_{i,t})_{i=1}^N, \tilde{l}_t \equiv (\tilde{l}_{i,t})_{i=1}^N$
3. $\tilde{L}_{i,t} := L_{i,t-1} + \tilde{l}_{i,t}$, where $\tilde{L}_t \equiv (\tilde{L}_{i,t})_{i=1}^N$
4. $p_{i,t+1} := \frac{(1-\eta)\exp(-\eta \tilde{L}_{i,t})}{\sum_{j=1}^N \exp(-\eta \tilde{L}_{j,j})} + \frac{\eta}{N}$

From the previous lecture, we know $\mathbb{E}[Regret_T^{EXP3}] \le O(\sqrt{NT \log N})$. This **optimal** bound holds also for EXP3-ORIG. In this lecture, we will :

- Show an EXP3 like algorithm that enjoys regret bound with high probability (WHP).

- Give a lower bound on regret (MINIMAX regret) across all bandit algorithms.

13.2 Modification of EXP3 to get WHP regret

To motivate this modification, first we argue about a technical issue (though very loose) with EXP3-ORIG and equivalently with EXP3 : Variance of estimated losses $L_{i,t}$, which are unbiased estimates of $L_{i,t}$ can be very large for both the algorithms. First, lets see why it is so. Recall the definition of $l_{i,t}$. We have,

$$\mathbb{E}[\tilde{l_{i,t}}^{2} \mid \mathscr{F}_{t-1}] = p_{i,t} \frac{l_{i,t}^{2}}{p_{i,t}^{2}} = \frac{l_{i,t}^{2}}{p_{i,t}} \approx O(1/p_{i,t})$$

Now, in EXP3-ORIG, optimal $\eta \approx \frac{1}{\sqrt{T}}$ and $p_{i,t} \ge \frac{\eta}{N} \approx \frac{1}{N\sqrt{T}}$ So we have, $\operatorname{Var}[\tilde{l_{i,t}} \mid \mathscr{F}_{t-1}] \approx O(\sqrt{T})$ Hence, $\operatorname{Var}[\tilde{L_{i,t}} | \mathscr{F}_{t-1}] \approx O(T^{3/2})$, which gets very large as T becomes larger.

Similarly, for EXP3 also $p_{i,t}$ can be very small, thus making the variance very large. To overcome

this issue, we make two key tweaks in EXP3-ORIG :

(i) Let us consider rewards or gains instead of losses, i.e.

gains $g_{i,t} := 1 - l_{i,t}$; $g_{i,t} \in [0, 1]$ and gain estimates $g_{\tilde{i},t} := \frac{g_{i,t}}{p_{i,t}} \mathbb{1}\{I_t = i\}$. Note, $g_{\tilde{i},t} \neq 1 - l_{\tilde{i},t}$ (ii) Control variance of (gain) estimates by adding a stabilization term (β) :

$$egin{aligned} &g'_{i,t} &:= rac{g_{i,t} + eta}{p_{i,t}}, ext{ if } I_t = i \ &:= rac{eta}{p_{i,t}}, ext{ if } I_t
eq i \ &= g_{\widetilde{i},t} + rac{eta}{p_{i,t}} \end{aligned}$$

The underlying idea behind these tweaks is to ensure that $G'_{i,t}$ is an **upper confidence bound** for $G_{i,t}$, where $G_{i,t} = \sum_{s=1}^{t} g_{i,s}$ and $G'_{i,t} = \sum_{s=1}^{t} g'_{i,s}$ Now, we present the WHP version of the EXP3-ORIG algorithm and call it as EXP3.P as given in [1].

EXP3.P

Parameters: $\beta, \gamma, \eta \in [0, 1]$ Initialize: $p_1 = Uniform\{1, 2, ..., N\}; G'_{i,0} = 0, \forall i \in [N]$ At each time t = 1, 2, 3, ..., T1. Sample $I_t \sim p_t$ For each i = 1, 2, ..., NFor each 1 = 1, 2,..., N 2. $g'_{i,t} := \frac{g_{i,t} \,\mathbbm{1}\{I_t = i\} + \beta}{p_{i,t}}$ 3. $G'_{i,t} := G'_{i,t-1} + g'_{i,t}$ 4. $p_{i,t+1} := \frac{(1 - \gamma) \exp(\eta G'_{i,t})}{\sum_{i=1}^{N} \exp(\eta G'_{j,t})} + \frac{\gamma}{N}$

Theorem 13.1. [Regret bound for EXP3.P]

For any $\delta \in (0,1)$ with Probability $\geq (1-\delta)$, $Regret_T^{EXP3.P} \leq 5.15\sqrt{NT\log(N/\delta)}$ Now choosing δ to be small enough, the bound can be satisfied with high probability.

Proof: Before proving the theorem, first consider the following lemma :

Lemma 13.2. [Upper Confidence property of g'] For $\beta < 1$, with probability $\geq (1 - \delta)$, $\sum_{t=1}^{T} g_{i,t} \leq \sum_{t=1}^{T} g'_{i,t} + \frac{\log(1/\delta)}{\beta}$, $\forall i \in [N]$

Proof: Let, $\mathscr{F}_{t-1} = \sigma - alg(I_1, I_2, ..., I_{t-1}, g(I_1, 1), g(I_2, 2)..., g(I_{t-1}, t-1))$, where g(i,t) denote $g_{i,t}$ and let $\mathbb{E}_t[.]$ denote $\mathbb{E}[.|\mathscr{F}_{t-1}]$. Now, $\mathbb{E}_t[\exp(\beta g_{i,t} - \beta g'_{i,t})] = \mathbb{E}_t[\exp(\beta g_{i,t} - \beta g_{i,t}) \mathbb{1}\{I_t = i\}) \exp(\frac{-\beta^2}{p_{i,t}})]$ [from definition of $g'_{i,t}$] $= \mathbb{E}_t[\exp(\beta (g_{i,t} - g_{i,t})) \exp(\frac{-\beta^2}{p_{i,t}})]$ [from definition of $g_{i,t}$] $= \mathbb{E}_t[1 + \beta (g_{i,t} - g_{i,t}) + (\beta (g_{i,t} - g_{i,t}))^2] \exp(\frac{-\beta^2}{p_{i,t}})$ [using, $e^x = 1 + x + x^2, \forall x \le 1$, where $x = \beta (g_{i,t} - g_{i,t}) \le \beta g_{i,t} \le 1$ and using the fact that $p_{i,t}$ is measurable w.r.t \mathscr{F}_{t-1}] $= (1 + \beta^2 \operatorname{Var}_t[g_{i,t}]) \exp(\frac{-\beta^2}{p_{i,t}})$ [as, \tilde{g} is an unbiased estimator of g] $= (1 + \beta^2 \frac{g_{i,t}^2}{p_{i,t}}) \exp(\frac{-\beta^2}{p_{i,t}})$ $\le \exp(\frac{\beta^2}{p_{i,t}}(g_{i,t}^2 - 1))$ [using, $1 + x \le e^x, \forall x \ge 0$]

Multiplying over t = 1, 2,..., T we get, $\mathbb{E}[\exp(\beta G_{i,t} - \beta G'_{i,t})] \le 1$ Now **Markov's inequality** gives,

$$Prob[\beta G_{i,t} - \beta G'_{i,t} \ge \log(1/\delta)] \le \frac{1}{1/\delta} = \delta$$

Thus, with probability $\ge (1 - \delta), G_{i,t} \le G'_{i,t} + \frac{\log(1/\delta)}{\beta}$
This is true for each i = 1, 2,..., N.

Now, it remains to prove theorem 13.1.

Proof of theorem: We will consider the **potential function** approach like exponential weights forecaster as discussed earlier. Let,

$$W_{t} := \sum_{i=1}^{N} w_{i,t} := \sum_{i=1}^{N} \exp(\eta G'_{i,t}).$$

So, $\log(\frac{W_{T}}{W_{0}}) = log(\frac{\sum_{i=1}^{N} \exp(\eta G'_{i,t})}{N}) \ge \eta \max_{i=1}^{N} G'_{i,t} - \log N$ ----- (*)
On the other hand,
 $\log(\frac{W_{t}}{W_{t-1}}) = \log(\sum_{i=1}^{N} (\frac{w_{i,t-1}}{W_{t-1}}) \exp(\eta g'_{i,t}))$

 $= \log(\sum_{i=1}^{N} (\frac{p_{i,t} - \gamma/N}{1 - \gamma}) \exp(\eta g'_{i,t})) \quad \text{[from definiton of EXP3.P update]}$ $= \log(\sum_{i=1}^{N} (\frac{p_{i,t} - \gamma/N}{1 - \gamma})(1 + \eta g'_{i,t} + \eta^2 g'_{i,t}^2)) \quad [\text{setting } \eta \text{ s.t. } \eta g' \le 1 \text{ and using}$ $e^x < 1 + x + x^2, \forall x < 1$ $\leq log(1+\frac{\eta}{1-\gamma}\sum_{i}p_{i,t}g'_{i,t}+\frac{\eta^2}{1-\gamma}\sum_{i}p_{i,t}g'_{i,t}^2)$ Now, $\sum_{i} p_{i,t} g'_{i,t}^{2} = \sum_{i} p_{i,t} g'_{i,t} \left(\frac{g_{i,t} \mathbb{1}\{I_{t} = i\} + \beta}{p_{i,t}} \right)$ $=g'(I_t,t)g_{I_t,t}+\beta\sum_{i,t}^{p_{i,t}}g'_{i,t}$ $\leq (1+\beta)\sum_{i}g'_{i,t}$ And $\sum_{i} p_{i,t} g'_{i,t} = \sum_{i} p_{i,t} \left(\frac{g_{i,t} \mathbb{1}\{I_t = i\} + \beta}{p_{i,t}} \right) = g_{I_t,t} + N\beta$ Hence, $\log(\frac{W_t}{W_{t-1}}) \le \frac{\eta}{1-\gamma}(g_{I_t,t}+N\beta) + \frac{\eta^2}{1-\gamma}(1+\beta)\sum_i g'_{i,t}$ [as $\log(1+x) \le x, \forall x$] Summing over t = 1, 2, ..., T we $log(\frac{W_{T}}{W_{0}}) \leq \frac{\eta}{1-\gamma} G_{T}^{EXP3.P} + \frac{\eta N\beta T}{1-\gamma} + \frac{\eta^{2}}{1-\gamma} (1+\beta) \sum_{i=1}^{N} G_{i,T}' \quad \dots \dots \dots (**)$ where, $G_T^{EXP3.P} = \sum_{t=1}^{I} g_{I_t,t}$ Putting (*) and (**) together we get, $\eta \max_{i} G'_{i,T} - logN \leq \frac{\eta}{1-\gamma} G^{EXP3.P}_{T} + \frac{\eta N\beta T}{1-\gamma} + \frac{\eta^2}{1-\gamma} (1+\beta) \sum_{i=1}^N G'_{i,T}$ $\Rightarrow G_T^{EXP3.P} - (1 - \gamma)G'_{max} \ge \frac{-(1 - \gamma)}{n} logN - N\beta T - \eta (1 + \beta)NG'_{max}, \text{ where } G'_{max} = \max_i G_{i,t}$ $\Rightarrow G_T^{EXP3.P} \ge \frac{-\log N}{\eta} - N\beta T + (1 - \gamma - \eta (1 + \beta)N)G'_{max} \quad [as, 1 - \gamma \le 1]$ Now, from lemma 13.2 we know, $\log(1/\delta)$ w.p. $\geq (1 - \delta), G_{i,T} \leq G'_{i,T} + \frac{\log(1/\delta)}{\beta}, \forall i \in [N].$ Applying union bound, w.p. $\geq (1 - \delta)$, $\max_{i} G_{i,T} \leq \max_{i} G'_{i,T} + \frac{\log(N/\delta)}{\beta}$ Hence w.p. $\geq (1 - \delta)$, $G_T^{EXP3.P} \ge -\frac{\log N}{n} - N\beta T + (1 - \gamma - \eta(1 + \beta)N) \max_i G_{i,T} - \frac{\log(N/\delta)}{\beta} (1 - \gamma - \eta(1 + \beta)N)$ [Choosing $\gamma, \beta, \eta \in [0, 1]$ s.t. $\stackrel{\prime}{0} \leq 1 - \gamma - \eta(1 + \beta)N < 1$] \Rightarrow w.p. $> (1 - \delta)$ $G_{i*,T} - G_T^{EXP3.P} \le \frac{\log N}{n} + N\beta T + \frac{\log(N/\delta)}{\beta} + \gamma G_{i*,T} + \eta (1+\beta)G_{i*,T}$ \Rightarrow w.p. $> (1 - \delta)$.

$$Regret_T^{EXP3.P} \le \frac{\log N}{\eta} + N\beta T + \frac{\log(N/\delta)}{\beta} + \gamma T + (1+\beta)\eta T, \text{ where } G_{i^*,T} = \max_i G_{i,T} \le T$$

Now, we can optimize β , η , γ to get: $Regret_T^{EXP3.P} \le 5.15\sqrt{TN\log(N/\delta)}$
Here optimal parameters are : $\beta = \sqrt{\frac{\log(N/\delta)}{T}}, \eta = 0.95\sqrt{\frac{\log N}{NT}}, \gamma = 1.05\sqrt{\frac{N\log N}{T}}$

13.3 Minimax lower bound across all bandit algorithms

Here, we will work in rewards setting and use the same notations as in the previous section.

Theorem 13.3. [Regret lower bound : bandits] inf sup $(\max_{i=1}^{N} E[\sum_{t=1}^{T} g_{i,t}] - E[\sum_{t=1}^{T} g_{I_t,t}]) \ge 1/20\sqrt{TN}$ where, infimum is over all bandit algorithms playing $(I_1, I_2, ..., I_T)$, supremum is over all i.i.d. bernoulli reward distributions and expectation is over randomness of both rewards and algorithm.

We will prove the theorem in the next lecture.

Bibliography

[1] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed bandit problem. *SIAM Journal on Computing*, 32(1):48–77, 2002.