
E1 245: Online Prediction & Learning Fall 2014

Lecture 13 — September 16
Lecturer: Aditya Gopalan Scribe: Sayak Ray Chowdhury

13.1 Recall
In the previous lecture, we have seen EXP3 algorithm regarding bandit model of learning i.e on-
line learning with partial information. The original work by Auer et. al. [1] considers a slightly
different version of what we have seen. Here we present the algorithm given in [1] and denote it
by EXP3-ORIG.

EXP3-ORIG
Parameter: η ∈ [0,1]
Initialize: p1 =Uni f orm{1,2, ...,N}; L̃0 = 0 ∈ RN

At each time t = 1, 2, 3,...,T
1. Sample It ∼ pt , where pt ≡ (pi,t )

N
i=1

For each i = 1, 2,..., N

2. ˜li,t :=
li,t
pi,t

1{It = i}, where lt ≡ (li,t )
N
i=1, l̃t ≡ ˜(li,t )

N
i=1

3. ˜Li,t := ˜Li,t−1 + ˜li,t , where L̃t ≡ ˜(Li,t )
N
i=1

4. pi,t+1 :=
(1−η)exp(−η ˜Li,t)

N
∑
j=1

exp(−η ˜L j,t)

+
η

N

From the previous lecture, we know E[RegretEXP3
T ] ≤ O(

√
NT logN). This optimal bound holds

also for EXP3-ORIG. In this lecture, we will :

– Show an EXP3 like algorithm that enjoys regret bound with high probability (WHP).
– Give a lower bound on regret (MINIMAX regret) across all bandit algorithms.

13.2 Modification of EXP3 to get WHP regret
To motivate this modification, first we argue about a technical issue (though very loose) with
EXP3-ORIG and equivalently with EXP3 : Variance of estimated losses ˜Li,t , which are unbiased
estimates of Li,t can be very large for both the algorithms. First, lets see why it is so.
Recall the definition of ˜li,t . We have,

E[ ˜li,t
2 |Ft−1] = pi,t

li,t2

pi,t2 =
li,t2

pi,t
≈ O(1/pi,t )
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Now, in EXP3-ORIG, optimal η ≈ 1√
T

and pi,t≥
η

N
≈ 1

N
√

T
So we have, Var[ ˜li,t |Ft−1]≈ O(

√
T )

Hence, Var[ ˜Li,t |Ft−1]≈ O(T 3/2), which gets very large as T becomes larger.
Similarly, for EXP3 also pi,t can be very small, thus making the variance very large. To overcome
this issue, we make two key tweaks in EXP3-ORIG :
(i) Let us consider rewards or gains instead of losses, i.e.

gains gi,t := 1− li,t ; gi,t ∈ [0,1] and
gain estimates ˜gi,t :=

gi,t
pi,t

1{It = i} . Note, ˜gi,t 6= 1− ˜li,t

(ii) Control variance of (gain) estimates by adding a stabilization term (β ) :

g′i,t :=
gi,t +β

pi,t
, if It = i

:=
β

pi,t
, if It 6= i

= ˜gi,t +
β

pi,t
The underlying idea behind these tweaks is to ensure that G′i,t is an upper confidence bound for

Gi,t , where Gi,t =
t
∑

s=1
gi,s and G′i,t =

t
∑

s=1
g′i,s

Now, we present the WHP version of the EXP3-ORIG algorithm and call it as EXP3.P as given in
[1].

EXP3.P
Parameters: β ,γ,η ∈ [0,1]
Initialize: p1 =Uni f orm{1,2, ...,N}; G′i,0= 0, ∀i ∈ [N]

At each time t = 1, 2, 3,...,T
1. Sample It ∼ pt
For each i = 1, 2,..., N

2. g′i,t :=
gi,t 1{It = i}+β

pi,t
3. G′i,t := G′i,t−1+g′i,t

4. pi,t+1 :=
(1− γ)exp(ηG′i,t )

N
∑
j=1

exp(ηG′ j,t )
+

γ

N

Theorem 13.1. [Regret bound for EXP3.P]
For any δ ∈ (0,1) with Probability ≥ (1−δ ), RegretEXP3.P

T ≤ 5.15
√

NT log(N/δ )
Now choosing δ to be small enough, the bound can be satisfied with high probability.

Proof: Before proving the theorem, first consider the following lemma :
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Lemma 13.2. [Upper Confidence property of g′]

For β < 1, with probability ≥ (1−δ ),
T
∑

t=1
gi,t≤

T
∑

t=1
g′i,t +

log(1/δ )

β
, ∀ i∈ [N]

Proof: Let, Ft−1 = σ − alg(I1, I2, ..., It−1,g(I1,1),g(I2,2)...,g(It−1, t−1)), where g(i, t) denote
gi,t and let Et [.] denote E[.|Ft−1]. Now,
Et [exp(βgi,t−βg′i,t )

= Et [exp(βgi,t−
βgi,t
pi,t

1{It = i})exp(
−β 2

pi,t
)] [from definition of g′i,t]

= Et [exp(β (gi,t− ˜gi,t))exp(
−β 2

pi,t
)] [from definition of ˜gi,t]

= Et [1+β (gi,t− ˜gi,t)+(β (gi,t− ˜gi,t))
2]exp(

−β 2

pi,t
)

[using, ex = 1+ x+ x2,∀x ≤ 1, where x = β (gi,t− ˜gi,t) ≤ βgi,t≤ 1 and using the fact that pi,t is
measurable w.r.t Ft−1]

= (1+β 2Vart [ ˜gi,t ])exp(
−β 2

pi,t
) [as, g̃ is an unbiased estimator of g]

= (1+β 2 gi,
2
t

pi,t
)exp(

−β 2

pi,t
)

≤ exp(
β 2

pi,t
(gi,

2
t −1)) [using, 1+ x≤ ex,∀x≥ 0]

≤ 1
Multiplying over t = 1, 2,..., T we get, E[exp(βGi,t−βG′i,t )]≤ 1
Now Markov’s inequality gives,

Prob[βGi,t−βG′i,t≥ log(1/δ )]≤ 1
1/δ

= δ

Thus, with probability ≥ (1−δ ), Gi,t≤ G′i,t +
log(1/δ )

β

This is true for each i = 1, 2,..., N.
�

Now, it remains to prove theorem 13.1.
Proof of theorem: We will consider the potential function approach like exponential weights
forecaster as discussed earlier. Let,

Wt :=
N
∑

i=1
wi,t :=

N
∑

i=1
exp(ηG′i,t ).

So, log(
WT

W0
) = log(

N
∑

i=1
exp(ηG′i,t )

N
)≥ η

N
max
i=1

G′i,t− logN - - - - - - - (*)

On the otherhand,

log(
Wt

Wt−1
) = log(

N
∑

i=1
(
wi,t−1

Wt−1
)exp(ηg′i,t ))
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= log(
N
∑

i=1
(

pi,t−γ/N
1− γ

)exp(ηg′i,t )) [from definiton of EXP3.P update]

= log(
N
∑

i=1
(

pi,t−γ/N
1− γ

)(1+ηg′i,t +η2g′i,
2
t )) [setting η s.t. ηg′ ≤ 1 and using

ex ≤ 1+ x+ x2, ∀x≤ 1]

≤ log(1+
η

1− γ
∑
i

pi,t g′i,t +
η2

1− γ
∑
i

pi,t g′i,
2
t )

Now, ∑
i

pi,t g′i,
2
t = ∑

i
pi,t g′i,t (

gi,t 1{It = i}+β

pi,t
)

= g′(It , t)gIt ,t +β ∑
i

g′i,t

≤ (1+β )∑
i

g′i,t

And ∑
i

pi,t g′i,t = ∑
i

pi,t (
gi,t 1{It = i}+β

pi,t
) = gIt ,t +Nβ

Hence, log(
Wt

Wt−1
)≤ η

1− γ
(gIt ,t +Nβ )+

η2

1− γ
(1+β )∑

i
g′i,t [as log(1+ x)≤ x, ∀x]

Summing over t = 1, 2,..., T we get,

log(
WT

W0
)≤ η

1− γ
GEXP3.P

T +
ηNβT
1− γ

+
η2

1− γ
(1+β )

N
∑

i=1
G′i,T - - - - - - - (**)

where, GEXP3.P
T =

T
∑

t=1
gIt ,t

Putting (*) and (**) together we get,

η max
i

G′i,T −logN ≤ η

1− γ
GEXP3.P

T +
ηNβT
1− γ

+
η2

1− γ
(1+β )

N
∑

i=1
G′i,T

⇒ GEXP3.P
T − (1− γ)G′max ≥

−(1− γ)

η
logN−NβT −η(1+β )NG′max, where G′max = max

i
Gi,t

⇒ GEXP3.P
T ≥ −logN

η
−NβT +(1− γ−η(1+β )N)G′max [as, 1− γ ≤ 1]

Now, from lemma 13.2 we know,

w.p. ≥ (1−δ ), Gi,T ≤ G′i,T +
log(1/δ )

β
, ∀i ∈ [N].

Applying union bound,

w.p. ≥ (1−δ ), max
i

Gi,T ≤max
i

G′i,T +
log(N/δ )

β

Hence w.p. ≥ (1−δ ),

GEXP3.P
T ≥− logN

η
−NβT +(1− γ−η(1+β )N)max

i
Gi,T −

log(N/δ )

β
(1− γ−η(1+β )N)

[Choosing γ , β , η ∈ [0,1] s.t. 0≤ 1− γ−η(1+β )N ≤ 1]
⇒ w.p. ≥ (1−δ ),

Gi∗,T −GEXP3.P
T ≤ logN

η
+NβT +

log(N/δ )

β
+ γGi∗,T +η(1+β )Gi∗,T

⇒ w.p. ≥ (1−δ ),
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RegretEXP3.P
T ≤ logN

η
+NβT +

log(N/δ )

β
+ γT +(1+β )ηT , where Gi∗,T = max

i
Gi,T ≤ T

Now, we can optimize β , η , γ to get: RegretEXP3.P
T ≤ 5.15

√
T N log(N/δ )

Here optimal parameters are : β =

√
log(N/δ )

T
, η = 0.95

√
logN
NT

, γ = 1.05

√
N logN

T
�

13.3 Minimax lower bound across all bandit algorithms
Here, we will work in rewards setting and use the same notations as in the previous section.

Theorem 13.3. [Regret lower bound : bandits]

inf sup (
N

max
i=1

E[
T
∑

t=1
gi,t ]−E[

T
∑

t=1
gIt ,t ])≥ 1/20

√
T N

where, infimum is over all bandit algorithms playing (I1, I2, ..., IT ), supremum is over all i.i.d.
bernoulli reward distributions and expectation is over randomness of both rewards and algorithm.

We will prove the theorem in the next lecture.
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