
E1 245: Online Prediction & Learning Fall 2014

Lecture 14 — September 18
Lecturer: Aditya Gopalan Scribe: Indu John

14.1 Recap
In the last two classes, we studied the EXP−3 algorithm that enjoys a regret bound of O

(√
T NlogN

)
.

Today, we establish a lower bound on regret for any algorithm in the adversarial bandit framework,
which will imply that the upper bound cannot be improved beyond logarithmic factors.

14.2 Lower bound on regret in adversarial bandit framework
We will continue to deal with rewards(or gains) instead of losses, for the sake of convenience.
The following theorem gives a lower bound on the regret of any prediction strategy(randomized or
deterministic) in the adversarial(non-stochastic) multi armed bandit setting.

Theorem 14.1 (Minimax lower bound). Let sup be the supremum over all distribution of re-
wards such that, for i = 1, ...,N, the rewards g(i,1),g(i,2), ...,g(i,T ) ∈ {0,1} are i.i.d., and let
in f be the infimum over all algorithms playing I1, I2, ..., IT . Then,

in f sup
N

max
i=1

(
E

[
T

∑
t=1

g(i, t)

]
−E

[
T

∑
t=1

g(It , t)

])
≥ 1

20

√
T N

where expectations are with respect to both the random generation of rewards and the internal
randomization of the algorithm.

The general idea of the proof is as follows. After T time steps, at least one arm is pulled less
than or equal to T

N times. For this arm, one cannot differentiate between a Bernoulli of parameter
1
2 and a Bernoulli of parameter 1

2 +
√

N
T . Thus if all arms are Bernoulli of parameter 1

2 but one

arm has parameter 1
2 +
√

N
T , then the algorithm should incur a regret of order T

√
N
T =
√

NT . To
formalize this idea, we use the Kullback-Leibler divergence, and in particular Pinsker’s inequality
to compare the behavior of a given algorithm on the null bandit (where all arms are Bernoulli of
parameter 1

2 ) and the same bandit where we raise the parameter of one arm by ε .
We shall prove a more general lemma, which leads to Theorem 14.1 by a simple optimization

over ε .
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Lemma 14.2. Let ε ∈ [0,1]. For any i∈ {1,2, ...,N}, let Ei denote the expectation against the joint
distribution of rewards where all arms are i.i.d. Bernoulli of parameter 1−ε

2 except arm i, which is
i.i.d. Bernoulli of parameter 1+ε

2 . Then, for any algorithm,

1
N

N

∑
i=1

Ei

[
T

∑
t=1

(g(i, t)−g(It , t))

]
≥ T ε

(
1− 1

N

)
−

√
εlog

(
1+ ε

1− ε

)√
T

2N

This implies that,

N
max
i=1

Ei

[
T

∑
t=1

(g(i, t)−g(It , t))

]
≥ T ε

(
1− 1

N

)
−

√
εlog

(
1+ ε

1− ε

)√
T

2N

since max is always greater than the mean.

Proof: We shall prove the lemma in 5 steps, as given below.
Step I : Empirical distribution of plays
We start by considering a deterministic algorithm.
Let Si,T = ∑

T
t=11{It = i}, the number of times arm i was played in T rounds.

Let qT := (q1,T ,q2,T , ...,qN,T ) be the empirical distribution of plays over the arms defined by
qi,T =

Si,T
T .

Let JT ∼ qT . Then, JT ∈ {1,2, ...,N}. Let Pi be the probability mass function of JT when all arms
are i.i.d. Bernoulli of parameter 1−ε

2 except arm i, which is i.i.d. Bernoulli of parameter 1+ε

2 .

Observe that Ei

[
S j,T
T

]
= Pi [JT = j]. Hence,

Ei

[
T

∑
t=1

(g(i, t)−g(It , t))

]
= Ei

[
T

∑
t=1

∑
j 6=i
1{It = j}(g(i, t)−g(It , t))

]

= εEi

[
T

∑
t=1

∑
j 6=i
1{It = j}

]

= εT ∑
j 6=i

Ei

[
S j,T

T

]
= εT ∑

j 6=i
Pi(JT = j)

= εT [1−Pi(JT = i)]

which implies
1
N

N

∑
i=1

Ei

[
T

∑
t=1

(g(i, t)−g(It , t))

]
= εT

[
1−

N

∑
i=1

Pi(JT = i)

]
(14.1)

Step II : Pinsker’s inequality
Let P0 be the probability mass function of JT when all the arms have the reward model i.i.d
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Bernoulli
(1−ε

2

)
. We use the following inequality to bound the RHS of equation (14.1).

Let µ,ν be two probability distributions on {1,2,...,N}. Then the KL divergence of ν from µ ,
D(µ||ν) satisfies, √

1
2

D(µ||ν) :=

√
1
2

N

∑
i=1

µilog
µi

νi

≥ (νi−µi) ∀i

Thus, √
1
2

D(P0||Pi) ≥ Pi[JT = i]−P0[JT = i]

⇒
N

∑
i=1

√
1
2

D(P0||Pi) ≥
N

∑
i=1

Pi[JT = i]−1

⇒ 1
N

N

∑
i=1

Pi[JT = i]≤ 1
N
+

1
N

N

∑
i=1

√
1
2

D(P0||Pi) (14.2)

Step III : Computation of D(P0||Pi)
In this step, we use some tools from information theory to derive an expression for the bound.
Note that, since the algorithm is deterministic, the sequence of observed rewards
gT = (g(I1,1),g(I2,2), ...,g(IT ,T )) uniquely determines the empirical distribution of plays qT . Let
PT

0 be the pmf of gT under the reward model where each arm’s reward ∼ Bernoulli
(1−ε

2

)
; and PT

i
be the pmf of gT under the reward model where arm i’s reward ∼ Bernoulli

(1+ε

2

)
and the rewards

of other arms ∼ Bernoulli
(1−ε

2

)
.

From information theory1, we have D(P0||Pi)≤ D(PT
0 ||PT

i ).

1Using chain rule for KL divergence.
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Now, we can use the chain rule for KL divergence2 as follows.

D(PT
0 ||PT

i ) = D(P1
0||P1

i )+
T

∑
t=2

∑
gt−1

[
Pt−1

0 (gt−1)×D
(
Pt

0(·|gt−1)||Pt
i(·|gt−1)

)]
= 1{I1 = i}D

(
1− ε

2

∣∣∣∣∣∣∣∣ 1+ ε

2

)
+1{I1 6= i} D

(
1− ε

2

∣∣∣∣∣∣∣∣ 1− ε

2

)
+

T

∑
t=2

{
∑

gt−1:It=i

Pt−1
0 (gt−1) D

(
1− ε

2

∣∣∣∣∣∣∣∣ 1+ ε

2

)
+ ∑

gt−1:It 6=i

Pt−1
0 (gt−1) D

(
1− ε

2

∣∣∣∣∣∣∣∣ 1− ε

2

)}

= D
(

1− ε

2

∣∣∣∣∣∣∣∣ 1+ ε

2

) T

∑
t=1

∑
gt−1:It=i

Pt−1
0 (gt−1) (Since D

(1−ε

2

∣∣∣∣ 1−ε

2

)
= 0)

= D
(

1− ε

2

∣∣∣∣∣∣∣∣ 1+ ε

2

) T

∑
t=1

P0[It = i]

= D
(

1− ε

2

∣∣∣∣∣∣∣∣ 1+ ε

2

)
E0 [Si,T ] (14.3)

Step IV : Conclusion for deterministic algorithms
Thus, we get

1
N

N

∑
i=1

√
D(P0||Pi)≤

1
N

N

∑
i=1

√
D(PT

0 ||PT
i )

≤

√
1
N

N

∑
i=1

D(PT
0 ||PT

i ) (Cauchy - Schwartz inequality)

=

√
1
N

N

∑
i=1

D
(

1− ε

2

∣∣∣∣∣∣∣∣ 1+ ε

2

)
E0

[
Si,T

T

]
T (From (14.3))

=

√
D
(

1− ε

2

∣∣∣∣∣∣∣∣ 1+ ε

2

)
T
N

N

∑
i=1

1
N

(E0

[
Si,T

T

]
= 1

N∀i)

=

√
ε log

(
1+ ε

1− ε

)
T
N

Substituting in equation (14.1),

1
N

N

∑
i=1

Ei

[
T

∑
t=1

(g(i, t)−g(It , t))

]
≥ εT

[
1− 1

N
− 1√

2

√
T
N

ε log
(

1+ ε

1− ε

)]
(14.4)

We deduce the result from this by optimizing ε . We have,

log
(

1+ ε

1− ε

)
≈ ε− (−ε) = 2ε

2D(p(x,y)||q(x,y)) = D(p(x)||q(x))+D(p(y|x)||q(y|x)) = D(p(x)||q(x))+∑x p(x)D(p(·|x)||q(·|x))
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Setting ε = c
√

N
T , the RHS of (14.4) becomes,

c
√

NT

(
1
2
− 1√

2

√
T
N

ε ·2ε

)
= c

√
NT
(

1
2
−
√

c
)

= Ω(
√

NT )

Step V : Extend result to randomized algorithms
The result for deterministic algorithms can easily be extended to randomized algorithms. Let Er
denote the expectation with respect to the algorithm’s internal randomization. Then, we have,

1
N

N

∑
i=1

Ei

[
T

∑
t=1

Er (g(i, t)−g(It , t))

]
= Er

[
1
N

N

∑
i=1

Ei

[
T

∑
t=1

(g(i, t)−g(It , t))

]]

Applying the lower bound on 1
N ∑

N
i=1Ei

[
∑

T
t=1 (g(i, t)−g(It , t))

]
, and noticing that averaging the

lower bounds preserves the lower bound, we obtain the desired result. �
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