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15.1 Recap
In the last lecture, we have seen the minimax regret bound for adversarial multi-armed bandits. In
this lecture, we will study bandits with side informations which are popularly known as contextual
bandits or associative bandits. Towards the end of this lecture, we will also analyze a contextual
variant of adversarial multi-armed bandit problem called bandits with expert advice.

15.2 (Adversarial) Contextual Multi-Armed Bandits
Adversarial contextual multi-armed bandits (C-MAB) can be seen as a natural extension of ad-
versarial multi-armed bandit (MAB) problems where at each round t = 1,2, · · · , the environment
reveals a context st from a set of contexts S , and based on which the learner selects a randomized
action It from the set of actions [N].1 The objective of the learner is to minimize its (expected)
regret w.r.t the best policy or function g : S 7→ [N] that maps each context to some action. A more
formal description of adversarial C-MAB is given below:

(Adversarial) C-MAB
Inputs:

Set of contexts or features: S
Set of actions or decisions: [N]

For each round t = 1,2, . . .
– Environment reveals st ∈S
– Learner selects an action It ∈ [N]
– Learner suffers loss l(It , t)

End

The expected regret of the learner at the end of round T is defined as:

RT := max
s1,s2,...sT

max
g:S 7→[N]

E

[
T

∑
t=1

l(It , t)−
T

∑
t=1

l
(
g(st), t

)]

1[n] = {1,2, · · · ,n} .
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Remarks:

1. One of the important application of C-MAB can be personalization of advertisements in rec-
ommender systems. The task of the system is to recommend an advertisement to each of its
user, and the system gets rewarded whenever a user clicks on the recommended advertise-
ment. Here the system plays the role of a learner, and each advertisement corresponds to
one action. The recorded history of each user serves as the contextual information based on
which the system recommends advertisements to its users.

Figure 15.1. An application of C-MAB: Personalization of advertisements in recommender systems.

2. Basic MAB is a special case of C-MAB where |S | = 1. Hence in this case the concept of
competing against the best policy g : S 7→ [N] simply boils down to competing against the
best action in [N].

3. In C-MAB problems, it is assumed that there exists some “good” mapping g∗ : S 7→ [N] in
the hindsight. The goal of the learner is to exploit the contextual informations while selecting
the actions.

4. Another popular variant of adversarial C-MAB is stochastic C-MAB where at each round t,
the loss corresponding to each action is chosen probabilistically.

15.2.1 Baseline Approach: S-EXP3
A simple and naive approach to deal with C-MAB problems is to simultaneously run |S | indepen-
dent instances of Exp3 algorithm for each distinct context s ∈S , and at each round t, predict as
per the EXP3 instance corresponding to the current context st .
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Theorem 15.1. For any set of contexts S ,

RT (S-EXP3)≤
√

2T N|S | logN

Proof: Let Ts = ∑
T
t=1 1(st = s) denotes the number of times context s is encountered in T rounds.

Then, for any sequence of contextual informations (s1,s2, · · · ,sT ),

max
g:S 7→[N]

E

[
T

∑
t=1

l(It , t)−
T

∑
t=1

l
(
g(st), t

)]
= max

g:S 7→[N]
E

[
∑

s∈S

(
T

∑
t=1

(l(It , t)− l(g(st), t))1(st = s)

)]

= max
g:S 7→[N]

E

[
∑

s∈S

(
∑

t:st=s
(l(It , t)− l(g(s), t))

)]

= ∑
s∈S

max
i∈[N]

E

[(
∑

t:st=s
(l(It , t)− l(i, t))

)]
≤ ∑

s∈S

√
2TsN logN [By regret bound of EXP3 algorithm]

=
√

2N logN ∑
s∈S

√
Ts

≤
√

2T N|S | logN [By Cauchy Schwartz Inequality]. �

Remarks:

1. Similar to original Exponential Weights algorithm, if the time horizon T is not known in
advance, the optimal learning rate η for each instance of EXP3 algorithm can be chosen by
so called doubling trick. Another popular approach for this purpose is to use time varying
learning rate ηt =

1√
t , ∀t = 1,2, . . ., which is independent of the time horizon T .

15.3 A variant of C-MAB: Bandits with Expert Advice
In this setting, it is assumed that there exists a finite set of M randomized policies (each of them
predicts over the set of N actions) which are treated as M experts. Based on the contextual infor-
mation revealed at round t = 1,2, · · · , each expert j ∈ [M] makes a randomized prediction π j,t ∈ ∆N
which in turn used by the learner for selecting an action It ∈ [N]. This problem can be viewed as
a variant of C-MAB, although the learner’s decision only indirectly depends on the contextual in-
formation through the prediction made by each expert. Similar to basic expert advice setting here
also the objective of the learner is to minimize the (expected) regret w.r.t the best expert. A more
formal description of problem setting is given below:
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Bandits with Expert Advice
Inputs:

Set of randomized policies or experts’ advice: {π j,t ∈ ∆N : j ∈ [M], t = 1,2, ..}
Set of actions or decisions: [N]

For each round t = 1,2, . . .
– Learner receives the experts’ advice {π1,t ,π2,t , · · · ,πM,t}
– Learner selects an action It ∈ [N]
– Learner suffers loss l(It , t)

End

The expected regret of the learner at the end of round T is defined as:

RT := max
m∈[M]

E

[
T

∑
t=1

l(It , t)−
T

∑
t=1

Ei∼πm,t [l(i, t)]

]

Remarks:

1. Note that, Ei∼πm,t [l(i, t)] =∑
N
i=1 πm,t(i)l(i, t) =< πm,t , lt > denotes the expected loss incurred

by expert m at round t, where lt = (l(1, t), l(2, t), · · · , l(N, t)).

2. It is assumed that each expert’s advice depends on the learner’s past history, i.e. πm,t ∈
σ
(
I1, I2, · · · , It−1, l(I1,1), l(I2,2), · · · , l(It−1, t−1)

)
.

15.3.1 Baseline Approach: EXP3 over Experts
A simple approach is to treat each of the M experts as one action (or bandit arm) and run EXP3
algorithm over these higher order bandits. More formally, at each round t, the algorithm first
draws one action (expert) I

′
t ∈ [M] from a distribution qt ∈ ∆M which is maintained by running

EXP3 algorithm over the set of M experts, and predicts It ∈ [N] according to the prediction of the
selected expert I

′
t , i.e It ∼ πI′t ,t

. The detailed description of the algorithm is given below:

Algorithm: EXP3 over Experts
Parameter:

η > 0
Initialize:

Probability distribution over M experts q1 ∼ Unif(0,1), i.e. qm,1 =
1
M ,∀m ∈ [M]

Cumulative loss for each expert
∼
Y 0 = 0, i.e.

∼
Y m,0 = 0,∀m ∈ [M]
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For each round t = 1,2, . . .
– Receive the experts’ advice {πt,1,π2,t , · · · ,πM,t}
– Select an expert I

′
t ∼ qt

– Predict an action It ∼ πI′t ,t
– Incur loss l(It , t)
– Compute estimated loss of M experts:

∼
y( j, t) =

Ei∼π j,t [l(i,t)]
q j,t

1( j = I
′
t ), ∀ j ∈ [M]

– Update estimated cumulative loss of M experts:

∼
Y j,t =

∼
Y j,t−1 +

∼
y( j, t), ∀ j ∈ [M]

– Update probability distribution over M experts:

q j,t+1 =
exp(−η

∼
Y j,t)

∑
M
m=1 exp(−η

∼
Y m,t)

, ∀ j ∈ [M]

End
—————————————————————————————————————

Theorem 15.2. With η =
√

2logM
T M ,

RT (EXP3 over Experts)≤
√

2T M logM

Proof of the above theorem follows directly from the regret bound of EXP3 algorithm as we have
seen in Lecture 12. However, this algorithm have two major drawbacks:

1. Due to the O(
√

M logM) dependency of M in the regret guarantee, if M is really large, the
regret bound of the above algorithm becomes trivial.

2. The algorithm does not make use of the structure of N actions, and it is independent of size of
the action set N. Indeed it can be shown that making a subtle modification to this algorithm
one can achieve a regret bound of O(

√
T N logM) which is much more competitive when

M >> N. This modified algorithm is known as EXP4, which we will study next.

15.3.2 EXP4
Similar to the above algorithm, EXP4 also maintains a probability distribution qt ∈ ∆M over the set
of M experts, but while the above algorithm predicts an action It ∈ [N] according to the prediction
of the selected expert πI′t ,t

∈ ∆N , EXP4 first mixes the prediction of each expert πm,t with qt , and
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then predicts It according to the resulting composite distribution pt ∈∆N . Moreover, the cumulative

loss
∼
Y m,t of each expert m is now estimated using pt instead of qI′t ,t

. A more formal description of
EXP4 algorithm is given below:

Algorithm: EXP4
Parameter:

η > 0
Initialize:

Probability distribution over M experts q1 ∼ Unif(0,1), i.e. qm,1 =
1
M ,∀m ∈ [M]

Cumulative loss for each expert
∼
Y 0 = 0, i.e.

∼
Y m,0 = 0,∀m ∈ [M]

For each round t = 1,2, . . .
– Receive the experts’ advice {πt,1,π2,t , · · · ,πM,t}
– Compute probability distribution over N actions pt ≡ (p1,t , p2,t , · · · , pN,t) ∈ ∆N , s.t.

pi,t = ∑
M
m=1 qm,tπt,m(i), ∀i ∈ [N]

– Predict an action It ∼ pt
– Incur loss l(It , t)
– Compute estimated loss of N actions:

∼
l (i, t) := l(i,t)

pi,t
1(i = It), ∀i ∈ [N]

– Compute estimated loss of M experts:

∼
y( j, t) = Ei∼π j,t [

∼
l (i, t)], ∀ j ∈ [M]

– Update estimated cumulative loss of M experts:

∼
Y j,t =

∼
Y j,t−1 +

∼
y( j, t), ∀ j ∈ [M]

– Update probability distribution over M experts:

q j,t+1 =
exp(−η

∼
Y j,t)

∑
M
m=1 exp(−η

∼
Y m,t)

, ∀ j ∈ [M]

End
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Theorem 15.3. With η =
√

2logM
T N ,

RT (EXP4)≤
√

2T N logM

15.4 Next Lecture
In the next lecture, we will study the proof of Theorem 15.3, and also start with the problem of
stochastic multi-armed bandits.
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