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Lecture 16 — September 25

Lecturer: Aditya Gopalan Scribe: Praveen M P

16.1 Recap

In the last class we saw Contextual Multi Armed Bandit (C-MAB) problem which was an extension

to the multi-armed bandit problem. In the C-MAB problem, apart from the MAB setting, at each

time t, the learner was also allowed to observe a current ‘context’ st ∈ S. We also saw that, if

|S| < ∞, looking the context at each time t, which is one of the elements of S , one can run an

EXP3 algorithm corresponding to that context.We showed that such an algorithm has upper bound

on regret as

RegretS−EXP3
T ≤

√

2TNlog(N)|S|

We also looked at a different view of C-MAB, ‘Bandits with expert advice’, where there are M

experts and N actions. We defined the notion of pseudo-regret in this setting as

RegretT := max
m∈[M ]

E

[

T
∑

t=1

l(It, t)−
T
∑

t=1

< πt,m, lt >

]

where It ∈ [N ] and < πt,m, lt > is the average loss for each arm ‘m’ at t.

Treating the problem similar to a higher order bandit problem, we argued that the expected

regret is of O(
√

TMlog(M)).
In this class, we will introduce a much better algorithm, EXP4 algorithm, which is a more

subtle modification of EXP3.

16.2 The EXP4 Algorithm

The EXP4 (EXP3 with expert advice) algorithm is described in Algorithm 1 EXP4. We will now

show an upper bound on regret for the EXP4 algorithm.

Theorem 16.1. EXP4 with η =
√

2log(M)
TN

gives

(expected) RegretT ≤
√

2TNlog(M) (16.1)

where M is the number of experts, N is the number of arms.

Note: This bound shows the power of EXP4 when N<<M and the bound is still good even when

the number of experts is exponentially growing with T.
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Algorithm 1 EXP4

Fix a parameter η > 0

Initialization: q1 =Uniform{1, 2, ....M}
At each t=1,2...T

-Get expert advice πt,1, πt,2, πt,3, ....πt,M each πt,m is a probability distribution over arms

-Draw It ∼ pt ≡(p1,t,p2,t.....pN,t) where pi,t =
M
∑

m=1

qt,mπt,m(i)

-Compute estimated losses for actions l̃i,t :=
li,t
pi,t

IIt=i

-Compute estimated losses for policies ỹm,t :=< πt,m, l̃t >
-Update

Ỹm,t = Ỹm,t−1 + ỹm,t

qt+1,m := exp(−ηỸm,t)
∑

j∈[M]

exp(−ηỸj,t)

Proof: Potential function technique like in EXP3 applied to distribution qt over expert gives

T
∑

t=1

M
∑

m=1

qt,mỹm,t −
η

2

T
∑

t=1

M
∑

m=1

qt,mỹ
2
m,t ≤ Ỹj,T +

T log(M)

η
∀j ∈ [M ] (16.2)

We will analyse 16.2 term by term. Consider the first term. From the definition of ỹm,t,

M
∑

m=1

qt,mỹm,t =

M
∑

m=1

qt,m < πt,m, l̃t >

=
M
∑

m=1

qt,m.πt,m(It)
l(It, t)

M
∑

m=1

qt,m.πt,m(It)

= l(It, t) (16.3)

Along the same lines, the second term is

M
∑

m=1

qt,mỹ
2
m,t =

M
∑

m=1

qt,m < πt,m, l̃t >
2

≤
M
∑

m=1

qt,m < πt,m, l̃
2
t >

=

M
∑

m=1

qt,m.πt,m(It)
l2(It, t)

(
M
∑

m=1

qt,m.πt,m(It))2
=

l2(It, t)

pIt,t
(16.4)

Where the second step follows from Jensen’s inequality.
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Using these estimates in the potential function bound 16.2, we get

T
∑

t=1

l(It, t)−
η

2

T
∑

t=1

l2(It, t)

pIt,t
≤ Ỹj,T +

log(M)

η
(16.5)

Observe that,

E[Ỹj,T ] = EFt−1 [

T
∑

t=1

EIt [ỹj,t/Ft−1]] = EFt−1 [

T
∑

t=1

EIt [< πt,j , l̃t > /Ft−1]]

= EFt−1 [
T
∑

t=1

< πt,j,EIt [l̃t/Ft−1] >]

= EFt−1 [

T
∑

t=1

< πt,j, lt >]

= EFt−1 [

T
∑

t=1

yj,t] = EFt−1 [Yj,t] (16.6)

Where the third inequality follows from the fact that, conditioned on past, πt,j is fixed, and others

follows from the definitions.

Also,

E[

T
∑

t=1

l2(It, t)

pIt,t
] ≤ E[

T
∑

t=1

1

pIt,t
] = EFt−1 [

T
∑

t=1

EIt [
1

pIt,t
]]

= EFt−1 [
T
∑

t=1

N
∑

i=1

pi,t
1

pi,t
] = NT (16.7)

Taking E[.] on both sides of 16.5 , using 16.6 , 16.7 rearranging terms, we get expected regret

as

RegretEXP4
T ≤

log(M)

η
+

η

2
TN (16.8)

It is easy to show that the optimum value of η that minimises the RHS is η =
√

2log(M)
TN

and hence

the regret bound is

(expected) RegretT ≤
√

2TNlog(M) (16.9)

�

16.3 Stochastic Multi-Armed Bandits

So far, we have discussed about the setting with adversarial losses (outcomes) of arms (actions).

The main criticisms of the discussed model can be

(i) No structure was assumed on losses (Real life systems might have probabilistic structure)
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(ii) Worst case guarantees derived might be too pessimistic (It might be okay to do well in av-

erage case over losses/outcomes)

Consider the setup where:

There is a set of random variables {Xi,s : i = 1, 2, ....N ; s = 1, 2, ...}
Where, Xi,s is the reward from arm i, when played sth successive time.

We assume:

• All the {Xi,s}i,s are independent

•∀ i, {Xi,1, Xi,2, Xi,3....} are identically distributed with E[Xi,s] = µi; and µ∗ = max
i∈[N ]

µi

At each time t, we want to play an arm It ∈ [N], based on (I1,I2,....,It−1)and associated rewards.

Goal: The goal is to maximize Total (expected) Reward in T plays. ie,

Maximize: E[
T
∑

t=1

µIt] =
N
∑

i=1

µiE[Ti(T)] where Ti(t) :=
T
∑

s=1

IIs=i

Equivalently, Minimize: {µ∗T −

N
∑

i=1

µiE[Ti(T)]} (16.10)

( where µ∗ is the mean corresponding to the best arm in the average sense.)

We call 16.10 as psuedo regret.

Note:

•max
i∈[N ]

E[µi(T )]− E[

N
∑

j=1

µjTj(T)] ≤ E[max
i∈[N ]

µi(T )]− E[

N
∑

j=1

µjTj(T)]

= E[max
i∈[N ]

µi(T )−
N
∑

j=1

µjTj(T)] (16.11)

•Can run EXP3 to get (pseudo) Regret=O(
√

NTlog(N)). But EXP3 doesn’t exploit

the structure of rewards.

16.3.1 Naive Approach

Since the rewards are stochastic in nature and empirical estimates are unbiased estimates of the

true mean, a naive approach can be the ‘greedy’ approach (Follow The Leader) as described in

Algorithm 2 ( FTL ). As an example consider the setting of two-armed bandits, each having reward

Bernoulli(µi), i=1,2 and 1 > µ1 > µ2 > 0. So, the arm 1 is better in expected sense, and thus is

the arm that we want to learn. Consider the algorithm:

It is easy to see that this algorithm is bad, and gives regret O(T). This is because, say if

both of the arms were played once to estimate the empirical mean, the probability that the event

{X1,1=0,X2,1=1} occurs is (1-µ1)(µ2) > 0. Hence RegretT ≥ (1− µ1)(µ2)T (µ1 − µ2)
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Algorithm 2 FTL

Initialization: Play each arm for a fixed number of times.

Select the best arm î = argmax
i∈{1,2}





Ti(t)∑

s=1
Xi,s

Ti(t)





Subsequently:Always play arm î

16.3.2 The ε-FIRST Algorithm

The ε-FIRST Algorithm solves the ‘linear regret problem’ by adding an ‘exploration’ phase, before

going to greedy phase.

Algorithm 3 ε-FIRST

Fix a parameter 0≤ ε ≤ 1

Phase 1: Play all arms round robin upto time εT.

Phase 2: For t≥ εT+1 play arm It = argmax
i

µ̂i(εT )

Theorem 16.2. The regret bound for the ε− FIRST algorithm for the optimum value of ε for a

time horizon of T is

Regret εFIRST
T ≤ 1 +

2N

∆2
log(2NT ) (16.12)

where ∆ = min
i

(µ∗ − µi)

Proof: From the definition 16.10,

RegretT = µ∗T −
N
∑

i=1

µiE[Ti(T)]

= µ∗εT −

N
∑

i=1

µiE[Ti(εT)] + µ∗(1− ε)T −

N
∑

i=1

µiE[Ti(T)− Ti(εT)]

= Regret [ Phase 1 ] + Regret [ Phase 2 ] (16.13)

Now, since Xi,s ∈ [0, 1],Regret [ Phase 1] ≤ εT
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Figure 16.1. An illustration of the mean rewards.

Regret[ Phase2 ] = µ∗(1− ε)T −

N
∑

i=1

µi(1− ε)TE[ no: of times arm i was played in phase 2]

= µ∗(1− ε)T −
N
∑

i=1

µi(1− ε)TPr [IεT+1 = i]

= (1− ε)T

N
∑

i=1, i 6=i∗

(µ∗ − µi)Pr [IεT+1 = i] ≤ (1− ε)TPr [IεT+1 6= i] (16.14)

Now, fix some i 6= i∗. Let ∆i = µ∗ − µi and ∆ = min
i

∆i as ilustrated in Figure 16.1

Pr [IεT+1 = i] ≤ Pr
[

µ̂i(εT ) > µ̂i∗(εT )

]

≤ Pr

[

µ̂i(εT ) > µi +
∆i

2

]

+ Pr

[

µ̂i(εT ) < µ∗ −
∆

2

]

≤ Pr

[

µ̂i(εT ) > µi +
∆

2

]

+ Pr

[

µ̂i(εT ) < µ∗ −
∆

2

]

≤ 2 exp

(

−2εT

N

(

∆

2

)2
)

(16.15)

Also Pr [IεT+1 6= i] ≤ 2Nexp

(

−εT∆2

2N

)

(16.16)

Where the inequalities 16.15 and 16.16 follows from Azuma-Hoeffding Inequality (Theorem 4.2).

Therefore, putting 16.16 in 16.14 and using 16.13

RegretεF ixed
T ≤ ε T + 2Nexp

(

−ε∆2

2N

)

(16.17)

Set the optimum value of ε = 2
∆2

N
T
log(2N T ) to get

Regret εFIRST
T ≤ 1 +

2N

∆2
log(2NT ) (16.18)

�

Note: ∆ has to be known in prior to fix the value of the parameter ε
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