E1 245: Online Prediction & Learning Fall 2014
Lecture 17 — September 30
Lecturer: Aditya Gopalan Scribe: Raj Kumar Maity

17.1 RECAP

In previous class we have seen that for a Stochastic MAB

Setup: N arms of a bandit. Random variables {X;,:i=[N],s =1,2...

X; s = reward for arm i when played for the s-th successive time . All {X;,};; are independent

Vi, {Xi1,X;2...} identically distributed. E[X; ;] = p;, t* = max? | y;

We can run EXP-3 algo to get Regret = O(/NT log N) but doesn’t exploit the stochastic structure
of rewards.Playing the FTL(greedy) gives linear regret(bad).Adding a exploration phase before
"GREEDY”(¢ first algorithm with 0 < & < 1) we get

2N
Regrety < 1+ " log(2NT)

2N
setting € = mlog(ZNT)

where A= 1" — j; A = minA; Drawback: Need to know A.

In this class we will see an elegant algorithm to fix the problem.

17.2 Stochastic Multiarm Bandit

Algorithm(UCB-"upper confidence bound )

- initially play each arm i € [N] once

fort >N+1
{
1. play arm argmax;cy|(fi(?) + C; 7)), where
fi(t) = ﬁ Z:fl) X; s (empirical mean)
Ti(r) = Loy 105 = 0)
Crs=1/ 2k;gtfor t,s >0;
}
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Theorem 17.1. [1] Suppose X; s € [0,1] then Regret“® <8logT (L 1) + &
{Ai = p* — i, p* = max;; }

Proof: Suppose we are on round ¢ < 7.For any suboptimal arm i # i*
Plai(t) — C g0y = il = Pli(t) — i > G, 1)

t 1 n
< EZIPH;E:)Q;—-NiEiCLA

n=1 s=1

{Hoeffding inequality :{Y;}iid random variable Y; € [0, 1]

3I>~

Similarly P[i (t) +Cy.q. iy < '] <173

With probability > 1 — 2173,

Cyy

i ] > €] < exp(—2ne?)}

{0:(t) - C, Ty < Mi = W= A < Qi+ (1) +C ) — At} —{call this event A}

8logT
5

8logt
=

210gt

{IfTi(t) > )

(= )= A2

> 0}

> [i+Cr, |+ [A —2C 1, | < () +C 10 r)
:>ﬁi+CI,Ti(t) < [+ ( )+Cl T (t :>It #1i

17-2



E1 245 Lecture 17 — September 30 Fall 2014

E[T:(1)] =E[1 + ;, IH{Ir = i}]
_ 8logT

<Blli+ Y T =0 Ti(0) 2 1] lli=—5"}

=L+ Y JP{l, = i,T(t) > I}}] {AN{Ti(t) = ;} C {I, #i}}

t=1

T
<li+) PlA]]
=1

< 8logT

NOTE: Optimal regret scaling for stochastic bandits is (Lai and Robbins 1985 [4])

liminfE[Ti(T)] > ! "
T—e logT = D(ui|p*)

-achieved by KL-UCBJ[2].

17.2.1 Pure Exploration in Stochastic Bandit

Motivation:
1. Suppose there is a budget of plays for experimentation.

2. Regret penalizes every suboptimal play, but this may not be desirable when there is an ex-
perimentation budget.

GOAL: Identify the best arm in a Bandit as quickly as possible.

-Sequential hypothesis testing but with the flexibility of picking 1 arm each time.

Defination :A bandit algorithm {i.e a rule mapping history of plays to arms } is called an (&, )
PAC algorithm (Probably approximately corectly) with sample complexity T if

1. It outputs a € optimal arm with probability > (1 — §) when it terminates.

2. No of time steps taken to terminate < 7'
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NOTE:
1. Fixed confidence setting i.e fix J.
2. Fixed budget setting i.e fix no of plays.
Naive Algorithm (-uniformly sample all arms.)
-Parameter (g, 6)
-Narms ;ie {1,2...N}
1. Sample each arm i for [ = 8%log(%\]) times
2. Let [1; be its emperical mean.
3. output i’ = argmax;[i;
Theorem 17.2. Naive (g,9) is (g,8) -PAC algorithm with sample complexity i%’ log %N.
Proof: We will show that its (€, 9) -PAC algorithm.
Let i be an arm such that y; < u* —¢€
A . € ., €
Pla; > gt ] < P > pi+ 53U <p” =51
€
< 2exp[-21(5)’]
0
N
Summing over all such i,
[Plalg fails to output € optimal arm ]< %N =0 U

Improvement:O(e—]\é log %/) — O(é\’—2 log %)

17.2.2 Median Elimination

Idea:Eliminate bad arm in phases
Algorithm:

-Parameter (¢, 9)

-initialize :§1 = {1,2,...N},& = £,8; =
Untill(|S;] = 1):

{

|

d=1
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1. sample each arm in S; for n; = - log% times .

($)?
Let f1;; denote the resulting emperical mean .
2. Letm; = MEDIAN(‘L’I,"[ s Sl);
Si1 =8\ (0 flig <my)

3. &4 =g;6=0;l=1+1.

Theorem 17.3. [3] Median elimination is (€, 0) -PAC algorithm with sample complexity O(f?V—2 log %)

let’s show that at the I-th phase the expected reward of the best surviving arm from S; drops by
at most & with probability > (1 — &)
LEMMA 1: for every phase 1, P[max jes, 4; < max;es,,, li +&] > (1 —§)

Proof: Without loss of generality , lets consider I=1 , max;cs, lli = 1* =

PN * &
Let £, :{,Lll'* <u —5}

PlEi] < exp(~2m(5)) <
Now lets take an arm j that is not £ optimal
Pl > ti 5]
<Pl > fir — - |ES]
< PlH; > py+ 5]
§M@>M+j
< % {Hoeffding Inequality}
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Let B be the no of arms j which are not €; optimal but emperically better than i*

N&;
E[BIET] < —
Né
N =+ 26
By Markov inequality: P|B > —|Eﬂ < % = Tl
2
N
PB2 ] <PB= !E1]+P[E1]
261 o1
i I R
3 T30
N
O
LEMMA 2:Sample complexity 0(% log %)
Proof: In phase 1, total no of samples = §|Sl| log(%)
1
Sample complexity
loeN 4 3 N 1
=) Z|5log(>) = O(= log <
) glzr 1og(5) = 0(2; 1og 3)
N _ € 3.1
Sil=8=—(3) 0=
with probabilty > (1 — §;) ,best mean > previous best mean —g;
By union bound,
with prob > 1 — (81 + & + ...+ Siogn),
<5
best mean > u* — (&1 + &+ ...+ Eogn)
<e
O
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