
E1 245: Online Prediction & Learning Fall 2014

Lecture 19 — Oct 9
Lecturer: Aditya Gopalan Scribe: Ganesh Ghalme

19.1 Thompson Sampling

19.1.1 Recap
Last time we studied the overview of Thompson sampling and how this analysis technique can be
used effectively to bound regret in MAB problem.
For N armed bandit problem and Bernaulli reward assumption we have Thompson sampling algo-
rithm,

Algorithm 1: Thompson Sampling
Input: No of arms = N, rewards dist=Bern(θi)

1 Initialize: Si =Fi =0 (Si = No of successes i e 1’s) 8i 2 [N]
2 At time t= 1,2,3,...
3 Sample θi(t)�Beta(1+Si;1+Fi)
4 Play arm ,It = argmaxi θi(t), get reward Rt ;
5 Update
6 SIt = SIt +1(RT = 1)
7 FIt = FIt +1(RT = 0)

19.1.2 Two Arms case
High level analysis Idea: Assume µ1 � µ2

Suppose arm 2 (sub-optimal arm) behaves ideally i.e. at any time t, θ2(t)' µ2, which is equivalent
to saying you have perfect information about arm 2.

The posterior distribution of arm 2 looks like.
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Posterior distribution of arm 1, initially an uniform distribution, would gradually look like,

The regret is incurred only when algorithm decides to play sub-optimal arm (i. e. arm 2)
Looking at the picture in time.
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Whenever the sampled value θ1(t) is greater than µ2 posterior of arm 1 is updated.
Which is equivalent to saying we update confidence level of arm 1 only when we choose it.

Next we address the question that without assumption 1, how much do arm 1’s posterior sample
deviate from typicality?

19.1.3 Proof
Notations
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1. J0= Number of plays of arm 1 when arm 2 is played for L = 24� logT=∆2 number of times.
[L is the time point at which assumption 1 kicks in]

2. j = Number of plays of arm 1 with S successes and (j-S) failures.

3. Vj= Time step at which j’th play of arm 1 happens.

4. Yj =Vj+1�Vj�1, Measure of time steps between j’th and (j+1)th play of arm 1.

5. W ( j;S;y)= Number of trials of a Beta(1+ S;1+ j� S) distribution.where S is the number
of successes.

After L round
Expected number of plays of second arm in time T is bounded by

E(T2(T ))� L+E
T�1
∑

j=J0

Yj

To understand the expectation of Yj we do following until it succeeds

1. Check if Beta(1+S;1+ j�S) distributed random variable exceeds a threshold y.

2. For each experiment we generate a beta-distributed r.v. independently of previous ones.

3. W ( j;S;y) denotes the number of trials before the experiment succeeds. it takes non-negative
integer values and is geometric random variable.

Recall that Yj is defined as the number of steps before θ1(t)> θ2(t) happens for the first time after
the jth play of the first arm.
Now consider the steps before θ1(t)> µ2 +∆=2 happens for the first time after the jth play of the
first arm.
Let us consider the event where value of θ2(t) lies below µ2 +∆=2 i.e.,

E = f8t 2Vj +1; :::;Vj+1�1;θ2(t)� µ2 +∆=2g

Lets try to find E[Yj1E ] i.e. Expected value of Yj under E,which can be bounded as follows

E[Yj1E ]� E[W ( j;S1 j;µ2 +∆=2)\T ]

When θ2(t) > µ2 +∆=2, then we use the fact that Yj is always bounded by T. Using the fact that
P(A)� P(A;B)+P(BC) we have,

E(y j1E)� E[W ( j;S1 j;µ2 +∆=2)\T ]+E(T1EC) where EC �
V j+1�1

∑
t=V j+1

1(θ2(t)> µ2 +∆=2)

E(
T

∑
j=J0

y j)�
T

∑
j=0
E(W ( j;S1; j;y)\T )+T

T

∑
j=0
E(

v j+1�1

∑
t=v j+1

1(fθ2(t)� y; j � J0g)) (19.1)

Where, y = µ2 +∆=2
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Define:

E2(t) = fθ2(t)� y OR T2(t)< Lg

we want to bound P(E2(tC))� :::
Lemma 1 : Key lemma.

8t � T , P(E2(t))� 1�
2

T 2

Proof of lemma 1:
Two sources of randomness one from samples from beta, second by sequence of seen variables.
(S2;F2)! Beta(S2;F2)! θ2
What we want to analyze is,

P(E2(t)C) = P(θ2(t)> µ2 +∆=2;T2 � L)

Introduce an auxilliary event,

A(t) = f
S2(t)
T2(t)

� µ2 +
∆

4
g

Idea-

θ2�µ2 = f(θ2(t)�
S2(t)
T2(t)

)+(
S2(t)
T2(t)

�µ2)g

Where first term is the beta distribution deviation and second term is empirical mean deviation.

now, We make use of the fact P(A)� P(A;B)+P(BC) to get,

P(E2(t)C)� P(A(t)C;T2(t)� L)+P(A(t);T2(t)� L;θ2(t)� µ2 +∆=2) (19.2)

Consider the first term,

P(A(t)C;T2(t)� L) = P(
S2(t)
T2(t)

> µ2 +∆=4;T2(t)� L)

Define another random variable X2;M as the average number of successes over the first M plays of
the second arm. More precisely, let random variable X2;m denote the output of the mth play of the
second arm. Then,

X2;M =
1
l

l
∑

m=1
X2;m

and
S2(t)
T2(t)

is the unbiased estimate of X2;M

Using above results we can write,

T
∑

l=L
P(

S2(t)
T2(t)

> µ2 +∆=4;T2(t) = l)�
T
∑

l=L
P(1=l

l
∑

m=1
X2;m > µ2 +∆=4)
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Using Azuma hoeffdings inequality RHS can be upper bounded by,

RHS�
T
∑

l=L
exp(�2l∆2=16)

Which can further be upper bounded by taking the lowest value of l i.e. l = L

� T � exp(�2L∆2=16)

Putting optimal value of L , i.e. L = 24� logT=∆2

=) RHS� T � exp(
�2∆2

16
:
24� logT

∆2 ) = 1=T 2

Consider the second term
P(A(t);T2(t)� L;θ2(t)> µ2 +

∆

2
) =

T
∑

l=L
P(

S2(t)
T2(t)

� µ2 +
∆

4
;θ2(t)> µ2 +

∆

2
;T2(t) = l)

�
T
∑

l=1
P(θ2(t)>

S2(t)
T2(t)

�
∆

4
+

∆

2
;T2(t) = l)

=
T
∑

l=1
P(θ2(t)>

S2(t)
T2(t)

+
∆

4
;T2(t) = l)

Using the fact that S2(t)=T2(t) is an unbiased estimator of
1
l

l
∑

m=1
X2;m

=) P(A(t);T2(t)� L;θ2(t)> µ2 +
∆

2
)�

T

∑
t=1
P(θ2(t)>

1
l

l

∑
m=1

X2;m +
∆

4
;T2(t) = l) (19.3)

recall that,

θ2(t)jS2(t);F2(t) � Beta(1+S2(t);1+F2(t))

Conditioning over S we have RHS of 19.3 ,

=
T

∑
l=L

l

∑
S=1

P(
l

∑
m=1

X2;m = S)�P((θ2(t)>
1
l

l

∑
m=1

X2;m +
∆

4
;T2(t) = lj

l

∑
m=1

X2;m = S)) (19.4)

Using, P(A;BjC) = P(BjC)P(AjB;C) =) P(A;BjC)� P(AjB;C) for the last term

�
T
∑

l=L

l
∑

S=1
P(

l
∑

m=1
X2;m = S)�P(θ2(t)>

S
l
+

∆

4
jT2(t) = l;

l
∑

m=1
X2;m = S)

=
T
∑

l=L
ES�Bin(l;µ2)[P(Beta(1+S;1+ l�S)>

S
l
+

∆

4
)]
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Neat fact about the beta distribution
FBeta(a;b)(y) = 1�FBin(a+b�1;y)(a�1)

P(Beta(1+S;1+ l�S)>
S
l
+

∆

4
) � FBin(l+1;y)(S)� FBin(l;y), (for notational convenience)

= P[
l
∑

i=1
Ui � S] where Ui � Ber(y)

= P(
1
l

l
∑

i=1
Ui� y�

S
l
� y)

using Azuma Hoeffding inequality

� exp(
�2l∆2

16
)� exp(

�2L∆2

16
) =

1
T 3

) Second term �
1

T 2
Putting it together

P(E(t)C)�
2

T 2

=) P(E(t))� 1�
2

T 2

Lemma 2: Deals with bounding the average.

E(W ( j;S1; j;y)\T )�

8>>>>><
>>>>>:

1+
2

1� y
+

µ1

∆
0
e�D j j <

y
D

log(R)

1+
Ry

1� y
e�D j +

µ1

∆
0
e�D j y

D
log(R)� j <

4log(T )

∆
02

16
T

j �
4log(T )

∆
02

(19.5)

Proof : Exercise.
Lemma 3: For all non-negative integers j , S� j, and for all y 2 [0;1],

E(W ( j;S1; j;y)\T jS1; j) =
1

FBin( j+1;y)(S)
�1

Proof: Exercise
Two sources of randomness
1. Randomness in S1; j
2. Randomness in W so we can write the above expression as

ES1; j�Bin( j;µ1)(E(W ( j;S1; j;y)\T jS1; j))

which is equivalent to,
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ES1; j�Bin( j;µ1)(E(Geo(1�FBeta(1+S;1+ j�S)(y))))�1

= ES1; j�Bin( j;µ1)[
1

FBin( j+1;y)(S)
]�1

[Proof left as an exercise]
Reference:[1]

19.1.4 Regret Analysis for 2 Arm case
Using equation 19.1 with Lemma 1, 2, 3 we get

E(T2(T ))� L+
T

∑
j=0
E(W ( j;S1; j;y)\T )+T

T

∑
j=0
E(

v j+1�1

∑
t=v j+1

1(fθ2(t)� y; j � J0g)) (19.6)

We use Lemma 1 to bound the last term, lemma 2 to bound the second term, finally get,

E(T2(T ))�
40� log(T )

∆2 +
48
∆4 +18

Detailed proof is left as an Exercise. Expected regret can be bounded as,

E(RT ) = E(∆�T2(T )) =
40� log(T )

∆
+

48
∆3 +18�∆

For N arms similar argument holds.

19.1.5 Wrapping Up
Thompson Sampling performance.

1. [1] [Agarwal�Goyal02011] : Rewards 2 [0,1],

for N=2, expected regret O(
log(T )

∆
)

for general N Regret=O(( ∑
i 6=i�

1
∆2 )

2log(T ))

Not better than UCB but very promising approach.

2. [2] [Kau f mann�Korda�Munos012] Bernaulli Bandits
8ε > 0

Expected Regret at time T � (1+ ε) ∑
i 6=i�

∆i(log(T )+ loglog(T ))

D(µijjµi�)
+ const(ε;µ1;µ2; :::;µN)

Asymptotically optimal with respect to time.

Note : Asymptotic regret scaling of ( ∑
i6=i�

∆i

D(µijjmui�)
)log(T ) is known to be Optimal. [Lai-

Robbins-1985]

19-8



E1 245 Lecture 19 — Oct 9 Fall 2014

3. [1] [Agarwal�Goyal02011] : Bernaulli Rewards
8ε > 0
E(RT )� (1+ ε) ∑

i6=i�

∆i

D(µijjµ�)
� log(T )+O(

N
ε2 )

Extended to much more general families.

4. [3] [kau f mann� et�al02013] : Continuous reward distribution
Reward Dist 2 1-dimensional exponential family [Beta, Gaussian, gamma,Pareto... ]
8ε > 0:

E(RT )� (
1+ ε

1� ε
)
(µ��µi)

D(θijjθ �)
� log(T )+ const(ε)
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