E1 245: Online Prediction & Learning

Fall 2014

Scribe: Ganesh Ghalme

Lecture 19 — Oct 9

Lecturer: Aditya Gopalan

19.1 Thompson Sampling

19.1.1 Recap

Last time we studied the overview of Thompson sampling and how this analysis technique can be used effectively to bound regret in MAB problem.

For N armed bandit problem and Bernaulli reward assumption we have Thompson sampling algorithm,

Algorithm 1: Thompson Sampling

Input: No of arms = N, rewards dist= $Bern(\theta_i)$ **1 Initialize:** $S_i = F_i = 0$ ($S_i = No$ of successes i e 1's) $\forall i \in [N]$ **2** At time t= 1,2,3,... **3** Sample $\theta_i(t) \sim Beta(1 + S_i, 1 + F_i)$ **4** Play arm $I_t = \arg \max_i \theta_i(t)$, get reward R_t ; **5** Update **6** $S_{I_t} = S_{I_t} + \mathbb{1}(\mathbb{R}_T = 1)$ **7** $F_{I_t} = F_{I_t} + \mathbb{1}(\mathbb{R}_T = 0)$

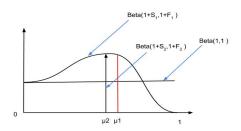
19.1.2 Two Arms case

High level analysis Idea: Assume $\mu_1 \ge \mu_2$

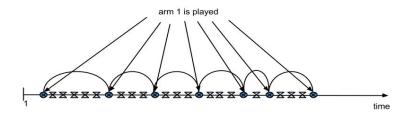
Suppose arm 2 (sub-optimal arm) behaves ideally i.e. at any time t, $\theta_2(t) \simeq \mu_2$, which is equivalent to saying you have perfect information about arm 2.

The posterior distribution of arm 2 looks like.

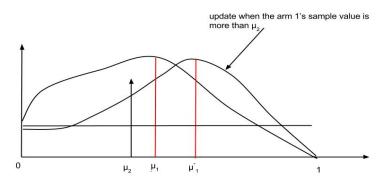
Posterior distribution of arm 1, initially an uniform distribution, would gradually look like,



The regret is incurred only when algorithm decides to play sub-optimal arm (i. e. arm 2) Looking at the picture in time.



Whenever the sampled value $\theta_1(t)$ is greater than μ_2 posterior of arm 1 is updated. Which is equivalent to saying we update confidence level of arm 1 only when we choose it.



Next we address the question that without assumption 1, how much do arm 1's posterior sample deviate from typicality?

19.1.3 Proof

Notations

- 1. J_0 = Number of plays of arm 1 when arm 2 is played for $L = 24 * log T / \Delta^2$ number of times. [L is the time point at which assumption 1 kicks in]
- 2. j = Number of plays of arm 1 with S successes and (j-S) failures.
- 3. V_i = Time step at which j'th play of arm 1 happens.
- 4. $Y_j = V_{j+1} V_j 1$, Measure of time steps between j'th and (j+1)th play of arm 1.
- 5. W(j, S, y) = Number of trials of a Beta(1 + S, 1 + j S) distribution.where S is the number of successes.

After L round

Expected number of plays of second arm in time T is bounded by

$$\mathbb{E}(T_2(T)) \le L + \mathbb{E}\sum_{j=J_0}^{T-1} Y_j$$

To understand the expectation of Y_i we do following until it succeeds

- 1. Check if Beta(1+S, 1+j-S) distributed random variable exceeds a threshold y.
- 2. For each experiment we generate a beta-distributed r.v. independently of previous ones.
- 3. W(j,S,y) denotes the number of trials before the experiment succeeds. it takes non-negative integer values and is geometric random variable.

Recall that Y_j is defined as the number of steps before $\theta_1(t) > \theta_2(t)$ happens for the first time after the j^{th} play of the first arm.

Now consider the steps before $\theta_1(t) > \mu_2 + \Delta/2$ happens for the first time after the j^{th} play of the first arm.

Let us consider the event where value of $\theta_2(t)$ lies below $\mu_2 + \Delta/2$ i.e.,

$$E = \{ \forall t \in V_j + 1, ..., V_{j+1} - 1, \theta_2(t) \le \mu_2 + \Delta/2 \}$$

Lets try to find $\mathbb{E}[Y_i \mathbb{1}_E]$ i.e. Expected value of Y_i under E, which can be bounded as follows

$$\mathbb{E}[Y_j \mathbb{1}_E] \le \mathbb{E}[W(j, S_{1j}, \mu_2 + \Delta/2) \cap T]$$

When $\theta_2(t) > \mu_2 + \Delta/2$, then we use the fact that Y_j is always bounded by T. Using the fact that $\mathbb{P}(A) \leq \mathbb{P}(A, B) + \mathbb{P}(B^C)$ we have,

$$\mathbb{E}(y_j \mathbb{1}_E) \le \mathbb{E}[W(j, S_{1j}, \mu_2 + \Delta/2) \cap T] + \mathbb{E}(T \mathbb{1}_{E^C}) \text{ where } E^C \le \sum_{t=V_j+1}^{V_{j+1}-1} \mathbb{1}(\theta_2(t) > \mu_2 + \Delta/2)$$

$$\mathbb{E}(\sum_{j=J_0}^T y_j) \le \sum_{j=0}^T \mathbb{E}(W(j, S_{1,j}, y) \cap T) + T \sum_{j=0}^T \mathbb{E}(\sum_{t=v_j+1}^{v_{j+1}-1} \mathbb{1}(\{\theta_2(t) \ge y, j \ge J_0\}))$$
(19.1)

Where, $y = \mu_2 + \Delta/2$

Define:

$$E_2(t) = \{ \theta_2(t) \le y \text{ OR } T_2(t) < L \}$$

we want to bound $P(E_2(t^C)) \leq ...$ Lemma 1 : Key lemma.

$$\forall t \leq T$$
 , $P(E_2(t)) \geq 1 - \frac{2}{T^2}$

Proof of lemma 1:

Two sources of randomness one from samples from beta, second by sequence of seen variables. $(S_2, F_2) \rightarrow Beta(S_2, F_2) \rightarrow \theta_2$ What we want to analyze is,

$$\mathbb{P}(E_2(t)^C) = P(\theta_2(t) > \mu_2 + \Delta/2, T_2 \ge L)$$

Introduce an auxilliary event,

$$A(t) = \{\frac{S_2(t)}{T_2(t)} \le \mu_2 + \frac{\Delta}{4}\}$$

Idea-

$$\theta_2 - \mu_2 = \{(\theta_2(t) - \frac{S_2(t)}{T_2(t)}) + (\frac{S_2(t)}{T_2(t)} - \mu_2)\}$$

Where first term is the beta distribution deviation and second term is empirical mean deviation.

now, We make use of the fact $\mathbb{P}(A) \leq \mathbb{P}(A, B) + \mathbb{P}(B^C)$ to get,

$$\mathbb{P}(E_2(t)^C) \le \mathbb{P}(A(t)^C, T_2(t) \ge L) + \mathbb{P}(A(t), T_2(t) \ge L, \theta_2(t) \ge \mu_2 + \Delta/2)$$
(19.2)

Consider the first term,

$$\mathbb{P}(A(t)^{C}, T_{2}(t) \ge L) = \mathbb{P}(\frac{S_{2}(t)}{T_{2}(t)} > \mu_{2} + \Delta/4, T_{2}(t) \ge L)$$

Define another random variable $X_{2,M}$ as the average number of successes over the first M plays of the second arm. More precisely, let random variable $X_{2,m}$ denote the output of the m^{th} play of the second arm. Then,

$$X_{2,M} = \frac{1}{l} \sum_{m=1}^{l} X_{2,m}$$

and $\frac{S_2(t)}{T_2(t)}$ is the unbiased estimate of $X_{2,M}$ Using above results we can write,

$$\sum_{l=L}^{T} \mathbb{P}(\frac{S_2(t)}{T_2(t)} > \mu_2 + \Delta/4, T_2(t) = l) \le \sum_{l=L}^{T} \mathbb{P}(1/l \sum_{m=1}^{l} X_{2,m} > \mu_2 + \Delta/4)$$

Using Azuma hoeffdings inequality RHS can be upper bounded by,

$$RHS \leq \sum_{l=L}^{T} exp(-2l\Delta^2/16)$$

Which can further be upper bounded by taking the lowest value of l i.e. l = L

$$\leq T * exp(-2L\Delta^2/16)$$

Putting optimal value of L , i.e. $L = 24 * logT / \Delta^2$

$$\implies RHS \le T * exp(\frac{-2\Delta^2}{16}, \frac{24 * logT}{\Delta^2}) = 1/T^2$$

Consider the second term

$$\mathbb{P}(A(t), T_{2}(t) \ge L, \theta_{2}(t) > \mu_{2} + \frac{\Delta}{2}) = \sum_{l=L}^{T} \mathbb{P}(\frac{S_{2}(t)}{T_{2}(t)} \le \mu_{2} + \frac{\Delta}{4}, \theta_{2}(t) > \mu_{2} + \frac{\Delta}{2}, T_{2}(t) = l)$$

$$\leq \sum_{l=1}^{T} \mathbb{P}(\theta_{2}(t) > \frac{S_{2}(t)}{T_{2}(t)} - \frac{\Delta}{4} + \frac{\Delta}{2}, T_{2}(t) = l)$$

$$= \sum_{l=1}^{T} \mathbb{P}(\theta_{2}(t) > \frac{S_{2}(t)}{T_{2}(t)} + \frac{\Delta}{4}, T_{2}(t) = l)$$

Using the fact that $S_2(t)/T_2(t)$ is an unbiased estimator of $\frac{1}{l} \sum_{m=1}^{l} X_{2,m}$

$$\implies \mathbb{P}(A(t), T_2(t) \ge L, \theta_2(t) > \mu_2 + \frac{\Delta}{2}) \le \sum_{t=1}^T \mathbb{P}(\theta_2(t) > \frac{1}{l} \sum_{m=1}^l X_{2,m} + \frac{\Delta}{4}, T_2(t) = l)$$
(19.3)

recall that,

$$\theta_2(t)|_{S_2(t),F_2(t)} \sim Beta(1+S_2(t),1+F_2(t))$$

Conditioning over S we have RHS of 19.3,

$$=\sum_{l=L}^{T}\sum_{S=1}^{l}\mathbb{P}(\sum_{m=1}^{l}X_{2,m}=S)*\mathbb{P}((\theta_{2}(t)>\frac{1}{l}\sum_{m=1}^{l}X_{2,m}+\frac{\Delta}{4},T_{2}(t)=l|\sum_{m=1}^{l}X_{2,m}=S))$$
(19.4)

Using, $\mathbb{P}(A, B|C) = \mathbb{P}(B|C)\mathbb{P}(A|B, C) \implies \mathbb{P}(A, B|C) \le \mathbb{P}(A|B, C)$ for the last term

$$\leq \sum_{l=L}^{T} \sum_{S=1}^{l} \mathbb{P}(\sum_{m=1}^{l} X_{2,m} = S) * \mathbb{P}(\theta_{2}(t) > \frac{S}{l} + \frac{\Delta}{4} | T_{2}(t) = l, \sum_{m=1}^{l} X_{2,m} = S) \\ = \sum_{l=L}^{T} \mathbb{E}_{S \sim Bin(l,\mu_{2})} [\mathbb{P}(Beta(1+S, 1+l-S) > \frac{S}{l} + \frac{\Delta}{4})]$$

Neat fact about the beta distribution

$$\begin{split} F_{Beta(a,b)}(y) &= 1 - F_{Bin(a+b-1,y)}(a-1) \\ \mathbb{P}(Beta(1+S,1+l-S) > \frac{S}{l} + \frac{\Delta}{4}) \equiv F_{Bin(l+1,y)}(S) \leq F_{Bin(l,y)}, \text{ (for notational convenience)} \\ &= \mathbb{P}[\sum_{i=1}^{l} U_i \leq S] \text{ where } U_i \sim Ber(y) \\ &= \mathbb{P}(\frac{1}{l}\sum_{i=1}^{l} U_i - y \leq \frac{S}{l} - y) \\ \text{ using Azuma Hoeffding inequality} \end{split}$$

$$\leq exp(\frac{-2l\Delta^2}{16}) \leq exp(\frac{-2L\Delta^2}{16}) = \frac{1}{T^3}$$

 $\therefore \text{ Second term} \le \frac{1}{T^2}$ **Putting it together**

$$\mathbb{P}(E(t)^{C}) \leq \frac{2}{T^{2}}$$
$$\implies \mathbb{P}(E(t)) \leq 1 - \frac{2}{T^{2}}$$

Lemma 2: Deals with bounding the average.

$$\mathbb{E}(W(j, S_{1,j}, y) \cap T) \leq \begin{cases} 1 + \frac{2}{1-y} + \frac{\mu_1}{\Delta'} e^{-Dj} & j < \frac{y}{D} log(R) \\ 1 + \frac{R^y}{1-y} e^{-Dj} + \frac{\mu_1}{\Delta'} e^{-Dj} & \frac{y}{D} log(R) \le j < \frac{4log(T)}{\Delta'^2} \\ \frac{16}{T} & j \ge \frac{4log(T)}{\Delta'^2} \end{cases}$$
(19.5)

Proof : Exercise.

Lemma 3: For all non-negative integers j, $S \le j$, and for all $y \in [0, 1]$,

$$\mathbb{E}(W(j, S_{1,j}, y) \cap T | S_{1,j}) = \frac{1}{F_{Bin(j+1,y)}(S)} - 1$$

Proof: Exercise

Two sources of randomness

1. Randomness in $S_{1,j}$

2. Randomness in W so we can write the above expression as

 $\mathbb{E}_{S_{1,j}\sim Bin(j,\mu_1)}(\mathbb{E}(W(j,S_{1,j},y)\cap T|S_{1,j}))$

which is equivalent to,

$$\begin{split} \mathbb{E}_{S_{1,j}\sim Bin(j,\mu_1)}(\mathbb{E}(Geo(1-F_{Beta(1+S,1+j-S)}(y)))) - 1 \\ &= \mathbb{E}_{S_{1,j}\sim Bin(j,\mu_1)}[\frac{1}{F_{Bin(j+1,y)}(S)}] - 1 \end{split}$$

[Proof left as an exercise] Reference:[1]

19.1.4 Regret Analysis for 2 Arm case

Using equation 19.1 with Lemma 1, 2, 3 we get

$$\mathbb{E}(T_2(T)) \le L + \sum_{j=0}^T \mathbb{E}(W(j, S_{1,j}, y) \cap T) + T \sum_{j=0}^T \mathbb{E}(\sum_{t=v_j+1}^{v_{j+1}-1} \mathbb{1}(\{\theta_2(t) \ge y, j \ge J_0\}))$$
(19.6)

We use Lemma 1 to bound the last term, lemma 2 to bound the second term, finally get,

$$\mathbb{E}(T_2(T)) \leq \frac{40 * log(T)}{\Delta^2} + \frac{48}{\Delta^4} + 18$$

Detailed proof is left as an Exercise. Expected regret can be bounded as,

$$\mathbb{E}(\mathbb{R}_T) = \mathbb{E}(\Delta * T_2(T)) = \frac{40 * log(T)}{\Delta} + \frac{48}{\Delta^3} + 18 * \Delta$$

For N arms similar argument holds.

19.1.5 Wrapping Up

Thompson Sampling performance.

- 1. [1] [*Agarwal Goyal*'2011] : Rewards \in [0,1], for N=2, expected regret $O(\frac{log(T)}{\Delta})$ for general N Regret= $O((\sum_{i \neq i^*} \frac{1}{\Delta^2})^2 log(T))$ Not better than UCB but very promising approach.
- 2. [2] [*Kaufmann Korda Munos*'12] Bernaulli Bandits $\forall \varepsilon > 0$ Expected Regret at time $T \leq (1 + \varepsilon) \sum_{i \neq i^*} \frac{\Delta_i(log(T) + loglog(T))}{D(\mu_i || \mu_{i^*})} + const(\varepsilon, \mu_1, \mu_2, ..., \mu_N)$ Asymptotically optimal with respect to time. *Note* : Asymptotic regret scaling of $(\sum_{i \neq i^*} \frac{\Delta_i}{D(\mu_i || mu_{i^*})}) log(T)$ is known to be Optimal. [Lai-Robbins-1985]

- 3. [1] [*Agarwal Goyal*'2011] : Bernaulli Rewards $\forall \varepsilon > 0$ $\mathbb{E}(\mathbb{R}_T) \le (1+\varepsilon) \sum_{i \ne i^*} \frac{\Delta_i}{D(\mu_i || \mu^*)} * log(T) + O(\frac{N}{\varepsilon^2})$ Extended to much more general families.
- 4. [3] [*kaufmann et al'*2013] : Continuous reward distribution Reward Dist \in 1-dimensional exponential family [Beta, Gaussian, gamma,Pareto...] $\forall \varepsilon > 0$: $\mathbb{E}(\mathbb{R}_T) \leq (\frac{1+\varepsilon}{1-\varepsilon}) \frac{(\mu^* - \mu_i)}{D(\theta_i || \theta^*)} * log(T) + const(\varepsilon)$

References

- [1] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem. *CoRR*, abs/1111.1797, 2011.
- [2] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: An asymptotically optimal finite-time analysis. In *Algorithmic Learning Theory - 23rd International Conference, ALT 2012, Lyon, France, October 29-31, 2012. Proceedings*, pages 199–213, 2012.
- [3] Nathaniel Korda, Emilie Kaufmann, and Rémi Munos. Thompson sampling for 1-dimensional exponential family bandits. In Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States., pages 1448–1456, 2013.