E1 245: Online Prediction & Learning Fall 2014
Lecture 21 — October 16
Lecturer: Aditya Gopalan Scribe: Rahul R

21.1 Recap

In the last lecture, we introduced the framework of online convex optimization in which the number
of experts is exponential in the size of the problem’s natural representation. An efficient algorithm
for the linear costs called Follow-The-Perturbed-Leader (FPL) was introduced and a broad outline
for proving its general regret bound was discussed. The proof of the general regret bound intro-
duces a non-causal algorithm called Be-the-Perturbed-Leader (BPL) for bounding the difference
between the optimal policy, OPT(T) and FPL.

In this lecture, we will prove the general regret bound for FPL. The proof technique uses three
lemmas for bounding the regret for FPL algorithm.

21.2 Problem setup

The set of experts, I, is a bounded subset of RN . Let D be the [ 1— diameter of D.

D= sup |ld—d';
d,d eD

An oblivious adversary specifies a sequence of cost vectors cy,ca,...,cr, ¢, € CC RN, Let

A= sup ||y
d.d'eD

An online algorithm chooses a sequence of strategies x,x2,....,x7. The cost of strategy x at
time ¢ is the dot product ¢;.x. Let

R= sup [{d,c)|
deD,ceC

‘We will define the notation

J
Qj:ZE:Q
t=i
and a function M(.) which finds the minimum cost given the total cost vectors, i.e.,

M(c) = argmin (d
(¢) = argmin(d, c)

Let OPT(1:T) = (c1.7,M(c1.1))
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21.3 Generic regret bound for FPL

We will make use of the following claims to prove the FPL regret bound.
1. BPL(T) is close to OPT(T). Specifically,

E[BPL(T) — OPT(T)] < E[ (po,M(C1.) —M(po)) | (21.1)

2. FPL(T) is not much greater than BPL(T), the reason being that the distribution of cg.; and
co:+—1 are so similar that their minimizers are very closely related.

3. E[{(po,x—y)] is small for any x,y € D

21.3.1 Validating Claim 1

To prove Claim 1 we will make use of the following lemma.

Lemma 21.1.

J
Vi< j, Z<Ct;M<Ci:z)> <A{ci.jM(ci:j)) (21.2)

t=i

Proof: Proof by induction on j —i.

Base case, j —i=0:
L.H.S= <Ci,M(Ci)>: R.H.S

Induction hypothesis:

Now add (c;,M(c;.;)) to both sides,

Y e M(cin)) < (e 1 M(ciy 1)) + ey M(ci)

t=i

Now, M(cj.j—1) = arggniﬁr; (d,ci.j—1). Hence, (ci.j—1,M(ci.j—1)) < (ci:j—1,d),¥d € D. In par-
€
ticular, <C,‘;j_1,M(Ci;j_1)> < <Ci:j—1;M(Ci:j)> . Hence,
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3" (er.M(cin)) < {eij1M(ci))) + (5. M(ex))

: <{ci.j,M(cij))

N

Setting co = po,i =0and j =T in (21.1) gives

T

;)<ct,M<co:,>> < {co4,M(coy))

< <CO:t;M<Cl:t)>
Substract (co,M(cp)) from both sides to get

T

BPL(T) = ) (c1,M(cox)) < (cou,M(c1r)) — {co,M(co))
t=1

= (c14,M(c14)) + (co,M(c1:)) — (co,M(co))
= OPT(T) + (co, M(c1.) — M(co))
= OPT(T) + (po,M(c1+) — M(po))

21.3.2 Validating Claim 2

We need to show that when Cy = Fy, which is the distribution used by FPL and BPL, the distribution
of Cy.;—1 =~ Cp;. To do this we need a metric to measuer “distance” between distributions.

1. Multiplicative distance d.(.,.)
For distributions p and g over RV, d,(p,q) = %nig 0, s.t. their pdfs satisfy
>

dp(x) < (1+6)dg(x)
dq(x) < (1+8)dp(x)

2. Additive distance d (.,.)
For distributions p and g over RV, d (p,q) = rﬁnig 0, s.t. there exist a joint distribution u
>

(coupling distribution) on RVxRY satisfying VS CRV, w(S,RY) = p(S), u(RN,S) = ¢(S)
and

pi{(x,y) :x#y} <6
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Lemma 21.2. Let p,q be two probability distributions on RY. Then,

1. Forany f:ID— [R,R]
Ecuplf(M(C))] < Ecng[f(M(C))] +2Rd . (p,q) (21.3)
2. Forany f:D — R,
Eenplf(M(C))] < [1+du(p,q)|Ec~glf (M(C))] (21.4)
Proof: For (21.3), let (C,C’) ~ tpn gv s.t. 4(C #C') < 8, then

Ecplf(M(C))] = Ecqlf (M(C))] = Epu[f(M(C)) — f(M(C))]
=Eu[f(M(C)) — f(M(C))|C #Clu(C#C)

<2Ré6
For (21.4),
Ec, [f(M(C))] = | F(M(C))dp(C)
/ F(M(C))(1+ 8)dq(C)
(1+ 5)]Ec~q[f(M(C))]
O
Define

D := —
max flx =y
A= maXHC||1
ceC

R:= max |{c,d)|
ceC,deD

Corollary 21.3. 1. Suppose d(Cy,C+Cy) < 8,VC € {Cy,C3,...,Cr}, then

E[FPLunif(T)] < ]E[BPLunif(T)] +26RT

2. Suppose d,(Cy,C+Cy) <9,VC €{C},Cy,...,Cr}. Also, suppose (c,x) >0,VC € {C},Cy,...,Cr},
x € D. Then,

E[FPL*(T)] < (1+ 8)E[BPL*(T)]

21-4



E1 245 Lecture 21 — October 16 Fall 2014

Proof:

1=

T
E[FPL(T)| =E[) (G, M(Cos-1) Z G, f1(Co))

.,
Il
—

E[BPL(T)] = E[Y (G, M(Coy)) ict,ft (Co+C)]

1=

.,
I
_

Proof of the corollary then follows by comparing term-by-term, applying Lemma(21.2) and
using translational invariance of d; and d,. O

Denote by FPL(¢€), the version of FPL with perturbation distribution

N .
_ &N i x| < 55,
dafx) = { 0 otherwise

Denote by FPL*(¢€), the version of FPL with perturbation distribution

e N
Lemma 21.4. Controlling d, ,d, fordq(.,.) anddy(.,.)
1. LetC e RN. IfCy ~ a on RV, then
d+(C(),C—|—C0) < 8HCH1

Vie{l,2,3,...,N}

2. IfCy~ pon RV, then,
d,(Co,C+Cp) < e €lClh 1
Proof: 1. Define

[ C if|C—Coll < 5
0 C—Cy otherwise

Observe that, C’ has same distribution as C + Cy. Hence,

1
par£C1<pIC-Collo> 5|

ERCUREUEES)

=D
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<Y pi60()—Cl> ]
N
Sl
—e[c]l
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2. We have,
e\N
du(x+C) = <N> o€l
<;<£)Ne—euh+awl
=\N

ie., d,(C+Cy) <e el _q

21.3.3 Validating Claim 3

Lemma 21.5.
E[(Py,x—y)] < ||lx—y|1E[||Po||] { Holder’s Inequality }
< D.E[[[P]l]
Lemma21.6. 1. IfPy~ a, then E[||Py||o] < 5

logN
2. If Py~ 1, then E[||Py]loe] = O [%}

Proof: If Py ~ «, the proof is immediate.
When Py ~ u, each coordinate of |Py| ~ exp (

).

o=

BBy l] = B[ _max |R(0)]

=1,2,...,

log N log N
i=1.2,...N €
+

< 2NlogN

when N >3
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Putting everything together:

E[FPLy(T)] < E[BPL(T)] +286RT
< E[BPL(T)] + 2eART

D
< OPT(T)+5_+2€ART

E[FPL*(T)] < (1+8)E[BPL*(T))
< e**E[BPL*(T)]
2DlogN
£

< | OPT(T) +
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