
E1 245: Online Prediction & Learning Fall 2014

Lecture 23 — October 30
Lecturer: Aditya Gopalan Scribe: Abhinav Das .N.V

23.1 Recap
In the last lecture we were analyzing the algorithm of Bandit Gradient Descent (B G D).The main
idea is to construct an approximate measure of the gradient of the loss functions and work as in
mirror descent. B G D is a method of online convex optimization with bandit feedback. The
problem setting is:

The convex set is K ⊆ Rd .
There is a sequence of loss functions f1, f2, f3..... fT : K→ R . But, for simplicity, we have
already assumed that the functions are bounded as fi∈ [−c,c] ,∀i = 1,2, ...T wherec ∈ R+.
∀t = 1,2, ...T , algorithm picks an element wt ∈ K .
At each time algorithm observes ft(wt) ∈ R .
B G D Algorithm:
Parameters:α,δ ,η > 0
There is a measure of inner and outer radius of K ie. ∃ r,R :r.B≤ K ≤ R.B where
B =unit ball (Rd) . ie. B = {x ∈ Rd : ||x|| ≤ 1}.
Initialize y1 = 0.
∀t = 1,2, ...T ut ∼ uni f orm(S) where S =unit sphere (Rd) . ie. S = {x ∈ Rd : ||x||= 1}.
Play xt = yt +δ .ut .
Update as y

′
t+1 = ∏(1−α)K(yt−η . ft(xt).ut) where ∏A(y) = argminx∈A||x− y||2.

Also we have established the result

EUt∼uni f orm(S)[ ft(yt +δ .ut).ut .
d
δ
] = ∇ f ∗t,δ (yt) (23.1)

.
where f ∗(x) = EV∼uni f orm(B)[ f (x+δ .v)] and d is the dimension of K.
Through a lemma we have the result that ,the optimum of ∑

T
t=1 ft

(ie.the minimizer of the sum of lossfunctions ) over (1−α)K is near the optimum over K.

minx∈(1−α)K

T

∑
t=1

ft(x)≤ 2αcT +minx∈K

T

∑
t=1

ft(x) (23.2)

23.2 Useful Lemmas to find the expected regret
Lemma 23.1. ∀x ∈ (1−α)K,

x+αr.B⊆ K

23-1



E1 245 Lecture 23 — October 30 Fall 2014

Proof: Let x ∈ (1−α)K, then
(1−α)K +αr.B⊆ (1−α)K +α.K ⊆ K [∵ r.B⊆ K]

�

This lemma helps in saying that, whenever your perturbation ut is controlled within a limit,your
xt = yt +δ .Ut will be within K.

Lemma 23.2. [Controlling how much ft changes over points in (1−α)K and K]
∀x ∈ (1−α)K,y ∈ K,
| ft(x)− ft(y)| ≤ ( 2c

αr ).||x− y||

Proof: Let x ∈ (1−α)K,y ∈ K,
y− x =4
case1:If ||4|| ≥ α.r ,then
( ||4||

αr .2c)≥ 2c≥ | ft(x)− ft(y)|
case 2:If ||4||< αr ,then
let us define z := x+ 4

||4||αr [ie. z is apoint in the direction of (y− x) and beyond y.]
So y divides the length αr from x to z in the ratio ||4|| : (αr−||4||).
⇒ y = ||4||

αr z+(1− ||4||
αr )x

But, by convexity of ft ,
ft(y)≤ ||4||αr ft(z)+(1− ||4||

αr ) ft(x) = ft(x)+
||4||
αr ( ft(z)− ft(x))

⇒ | ft(x)− ft(y)| ≤ ( 2c
αr ).||x− y||

�

Lemma 23.3. [Correctness of B G D]
Whenever δ

r ≤ α ≤ 1,xt ∈ K,∀t ≥ 1

Proof: By definition,yt ∈ (1−α)K.
xt ∈ yt +δ .S⊆ yt +δ .B⊆ yt +αr.B [∵ S⊆ B and αr ≥ δ ]
From lemma 23.1 xt ∈ K.

�

23.3 Theorems
Theorem 23.4. The expected regret of B G D inT rounds (with appropriate parameter values for
α,δ ,η) is

O(T
5
6 .c. 3

√
dR
r )
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Proof: STEP 1: Analyze regret w.r.t the points {yt},loss functions { f ∗t } and decision set
(1−α)K.
We know that f ∗(x) = EV∼uni f orm(B)[ f (x+δ .v)].
Define gt := ft(yt +δ .ut).ut .

d
δ

Through equation (23.1) we have
E[gt/yt ] = ∇ f ∗t (yt)
Consider Stochastic Gradient Descent.
Loss functions are { f ∗t },decision set is (1−α)K and step size η ′ := η

δ

d .
Initialize y1 = 0.
∀t > 1, yt+1 = ∏(1−α)K(yt−η ′.gt) and E[gt/yt ] = ∇ f ∗t (yt).

Theorem 23.5. [Stochastic Gradient Descent (S G D)]
Suppose C1,C2,C3... : K→ R is a sequence of convex,differentiable functions on the convex
set K.
Let 0⊆ K,w1 = 0 and ∀t ≥ 1, η ≥ 0.
wt+1 := ∏K(wt−η .gt) where E[gt/wt ] = ∇Ct(wt)
||gt || ≤ G almost surely, D := Supx∈K||x||.
Then E[∑T

t=1Ct(wt)−minw∈K ∑
T
t=1Ct(w)]≤ η

2 T G2 + D2

2η

We can apply the aboveteorem of S G D with {Ct := f ∗t },{wt := yt},K ≡ (1−α)K ,
Supx∈(1−α)K||gt(x)||= Supx∈(1−α)K|| dδ . ft(yt +δ .ut).ut || ≤ d

δ
c =: G [∵ ft is bounded and

ut is a unit vector]
and Supx∈(1−α)K||x||2 ≤ R =: D [Outer radius of K]
Then we get,
E[∑T

t=1 f ∗t (yt)−miny∈(1−α)K ∑
T
t=1 f ∗t (y)]≤

η ′

2 T G2 + D2

2η ′

On optimization,when we set
η ′ = D

G
√

T
= R

dc
δ

√
T
= Rδ

dc
√

T
= η

δ

d

⇒ η = R
c
√

T

∴ E[
T

∑
t=1

f ∗t (yt)−miny∈(1−α)K

T

∑
t=1

f ∗t (y)]≤
Rdc
δ

√
T (23.3)

STEP 2: Connecting f ∗t (yt) to ft(yt)
Let us define a quantity called “EFFECTIVE LIPSCHITZ CONSTANT”-L′ := 2c

αr

| f ∗t (yt)− ft(xt)| ≤ | f ∗t (yt)− ft(yt)|+ | ft(yt)− ft(xt)| (23.4)

The LHS in the inequality can be controlled by controlling both terms on RHS of
equation (23.4).
For any z ∈ (1−α)K, δ

r ≤ α ≤ 1,we have
| f ∗t (z)− ft(z)|= |EV∼uni f orm(B)[ ft(z+δ .v)− ft(z)]| ≤ EV∼uni f orm(B)[| ft(z+δ .v)− ft(z)|]
From Lemma 23.1 we know that (z+δ .v) ∈ K
From Lemma 23.2 we know that this difference is bounded as
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| f ∗t (z)− ft(z)| ≤ EV∼uni f orm(B)[
2c
αr ||δv||]≤ L′.δ [∵ v is inside a unit ball]

The second term in RHS of equation (23.4) also can be bounded as above with the only
difference that xt ∈ K .
∴ | f ∗t (yt)− ft(xt)| ≤ L′.δ +L′.δ = 2L′.δ
Using this result on LHS of equation (23.3) appropriately gives

E[
T

∑
t=1

( ft(xt)−2L′.δ )−miny∈(1−α)K

T

∑
t=1

( ft(y)+L′.δ )]≤ Rdc
δ

√
T (23.5)

STEP 3: Connecting optimum over (1−α)K to optimum over K.
Applying the result in equation (23.2) to equation (23.5) gives
E[∑T

t=1 ft(xt)]−minx∈K ∑
T
t=1 ft(x)≤ Rdc

δ

√
T +3L′.δT +2αcT

∴ E[RegretBGD
T ]≤ Rdc

δ

√
T + 6δcT

αr +2αcT
The expression is like x

δ
+ yδ

α
+ zα

δ = 3
√

x2

y.z =
3
√

rR2d2

12T and α = 3
√

x.y
z2 = 3

√
3Rd

2r
√

T
will give

E[RegretBGD
T ]≤ 3cT

5
6 3
√

dR
r

�

Theorem 23.6. If each { ft} is L-Lipschitz functions,then
E[RegretBGD

T ]≤ 2T
3
4 3
√

3dRc(L+ c
r )

Proof: The proof follows from that of Theorem 23.4 with the difference that we can use the direct
Lipschitz constant in step2.

�

23.4 Reshape K to avoid large R
r ratio

We have got regret bound which is a dependent on R
r . This bound will become very bad when this

ratio is large.
So as to avoid this, the convex set K (which is now r.B⊆ K ⊆ R.B)can be put into
“ISOTROPIC POSITION”.
ie.∃ an affine transformationT : Rd → Rd such that
1.B⊆ T (K)⊆ d.B
There are efficient algorithms to find such a transformation T (approximately).
eg.L.Lovasz and S.Vempala, in their work, guarantees a T such that
B⊆ T (K)⊆ 1.01B
So,before applying the B G D algorithm,we aill apply this transformation on K so that we
will get
r′ = 1 and R′ = 1.01d
Let f

′
t : T (K)→ R

In this new setting,∀y ∈ T (K), f
′
t (y) := ft(T−1(y))
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Lemma 23.7. If ft is L-Lipschitz over K and R = Supx∈K||x||,then f
′
t is LR -Lipschitz over T (K).

After reshaping we will get r′ = 1 , R′ = 1.01d and L′ = LR. Then
E[RegretBGD

T ]≤ 6T
3
4 d(
√

cLR+ c) for L-Lipschitz and
E[RegretBGD

T ]≤ 6T
5
6 dc without the L-Lipschitz condition

23.5 References
1)Online convex optimization in the bandit setting: gradient descent without a gradient by Abra-
ham D. Flaxman, Adam Tauman Kalai and H. Brendan McMahan.

http://people.cs.uchicago.edu/˜kalai/papers/bandit/bandit.pdf

23-5


