E1 245: Online Prediction & Learning

Fall 2014

Lecture 23 — October 30

Lecturer: Aditya Gopalan

Scribe: Abhinav Das .N.V

23.1 Recap

In the last lecture we were analyzing the algorithm of Bandit Gradient Descent (B G D). The main idea is to construct an approximate measure of the gradient of the loss functions and work as in mirror descent. B G D is a method of online convex optimization with bandit feedback. The problem setting is:

The convex set is $K \subseteq \mathbb{R}^d$.

There is a sequence of loss functions $f_1, f_2, f_3, \dots, f_T : K \to \mathbb{R}$. But, for simplicity, we have already assumed that the functions are bounded as $f_i \in [-c, c]$, $\forall i = 1, 2, \dots T$ where $c \in \mathbb{R}_+$. $\forall t = 1, 2, \dots T$, algorithm picks an element $w_t \in K$.

At each time algorithm observes $f_t(w_t) \in \mathbb{R}$.

B G D Algorithm:

Parameters: $\alpha, \delta, \eta > 0$ There is a measure of inner and outer radius of K ie. $\exists r, R : r.B \le K \le R.B$ where B =unit ball (\mathbb{R}^d) . ie. $B = \{x \in \mathbb{R}^d : ||x|| \le 1\}$. Initialize $y_1 = 0$. $\forall t = 1, 2, ...T \quad u_t \sim uniform(S)$ where S =unit sphere (\mathbb{R}^d) . ie. $S = \{x \in \mathbb{R}^d : ||x|| = 1\}$. Play $x_t = y_t + \delta.u_t$. Update as $y'_{t+1} = \prod_{(1-\alpha)K} (y_t - \eta.f_t(x_t).u_t)$ where $\prod_A (y) = argmin_{x \in A} ||x-y||_2$. Also we have established the result

$$E_{U_t \sim uniform(S)}[f_t(y_t + \delta . u_t) . u_t . \frac{d}{\delta}] = \nabla f_{t,\delta}^*(y_t)$$
(23.1)

where $f^*(x) = E_{V \sim uniform(B)}[f(x + \delta .v)]$ and *d* is the dimension of *K*.

Through a lemma we have the result that ,the optimum of $\sum_{t=1}^{T} f_t$ (i.e. the minimizer of the sum of lossfunctions) over $(1 - \alpha)K$ is near the optimum over *K*.

$$min_{x \in (1-\alpha)K} \sum_{t=1}^{T} f_t(x) \le 2\alpha cT + min_{x \in K} \sum_{t=1}^{T} f_t(x)$$
(23.2)

23.2 Useful Lemmas to find the expected regret

Lemma 23.1. $\forall x \in (1 - \alpha)K$, $x + \alpha r.B \subseteq K$

Proof: Let $x \in (1 - \alpha)K$, then $(1 - \alpha)K + \alpha r.B \subseteq (1 - \alpha)K + \alpha.K \subseteq K$ [$\because r.B \subseteq K$]

This lemma helps in saying that, whenever your perturbation u_t is controlled within a limit, your $x_t = y_t + \delta U_t$ will be within *K*.

Lemma 23.2. [Controlling how much f_t changes over points in $(1 - \alpha)K$ and K] $\forall x \in (1 - \alpha)K, y \in K,$ $|f_t(x) - f_t(y)| \le (\frac{2c}{\alpha r}).||x - y||$

Proof: Let $x \in (1 - \alpha)K, y \in K$, $y - x = \Delta$ **case1:**If $||\Delta|| \ge \alpha . r$, then $(\frac{||\Delta||}{\alpha r}.2c) \ge 2c \ge |f_t(x) - f_t(y)|$ **case 2:**If $||\Delta|| < \alpha r$, then let us define $z := x + \frac{\Delta}{||\Delta||} \alpha r$ [ie. z is apoint in the direction of (y - x) and beyond y.] So y divides the length αr from x to z in the ratio $||\Delta|| : (\alpha r - ||\Delta||)$. $\Rightarrow y = \frac{||\Delta||}{\alpha r} z + (1 - \frac{||\Delta||}{\alpha r})x$ But, by convexity of f_t , $f_t(y) \le \frac{||\Delta||}{\alpha r} f_t(z) + (1 - \frac{||\Delta||}{\alpha r}) f_t(x) = f_t(x) + \frac{||\Delta||}{\alpha r} (f_t(z) - f_t(x))$ $\Rightarrow |f_t(x) - f_t(y)| \le (\frac{2c}{\alpha r}) . ||x - y||$

Lemma 23.3. [Correctness of *B G D*] Whenever $\frac{\delta}{r} \le \alpha \le 1, x_t \in K, \forall t \ge 1$

Proof: By definition, $y_t \in (1 - \alpha)K$. $x_t \in y_t + \delta . S \subseteq y_t + \delta . B \subseteq y_t + \alpha r . B [:: S \subseteq B \text{ and } \alpha r \ge \delta]$ From lemma 23.1 $x_t \in K$.

23.3 Theorems

Theorem 23.4. The expected regret of *B G D* in*T* rounds (with appropriate parameter values for α, δ, η) is

$$O(T^{\frac{5}{6}}.c.\sqrt[3]{\frac{dR}{r}})$$

E1 245

Proof: STEP 1: Analyze regret w.r.t the points $\{y_t\}$, loss functions $\{f_t^*\}$ and decision set $(1-\alpha)K$.

We know that $f^*(x) = E_{V \sim uniform(B)}[f(x + \delta .v)].$ Define $g_t := f_t(y_t + \delta . u_t) . u_t . \frac{d}{\delta}$ Through equation (23.1) we have $E[g_t/y_t] = \nabla f_t^*(y_t)$ Consider Stochastic Gradient Descent. Loss functions are $\{f_t^*\}$, decision set is $(1 - \alpha)K$ and step size $\eta' := \eta \frac{\delta}{d}$. Initialize $y_1 = 0$. $\forall t > 1, y_{t+1} = \prod_{(1-\alpha)K} (y_t - \eta' g_t) \text{ and } E[g_t/y_t] = \nabla f_t^*(y_t).$

Theorem 23.5. [Stochastic Gradient Descent (S G D)]

Suppose $C_1, C_2, C_3...: K \to \mathbb{R}$ is a sequence of convex, differentiable functions on the convex set K.

Let $0 \subseteq K, w_1 = 0$ and $\forall t \ge 1, \eta \ge 0$. $w_{t+1} := \prod_{K} (w_t - \eta \cdot g_t)$ where $E[g_t/w_t] = \nabla C_t(w_t)$ $||g_t|| \leq G$ almost surely, $D := Sup_{x \in K} ||x||$. Then $E[\sum_{t=1}^{T} C_t(w_t) - \min_{w \in K} \sum_{t=1}^{T} C_t(w)] \leq \frac{\eta}{2} T G^2 + \frac{D^2}{2\eta}$

We can apply the above of S G D with $\{C_t := f_t^*\}, \{w_t := y_t\}, K \equiv (1 - \alpha)K$, $Sup_{x \in (1-\alpha)K} ||g_t(x)|| = Sup_{x \in (1-\alpha)K} ||\frac{d}{\delta} f_t(y_t + \delta . u_t) . u_t|| \le \frac{d}{\delta}c =: G [:: f_t \text{ is bounded and}]$ u_t is a unit vector] and $Sup_{x \in (1-\alpha)K} ||x||_2 \le R =: D$ [Outer radius of *K*] Then we get, $E[\sum_{t=1}^{T} f_t^*(y_t) - \min_{y \in (1-\alpha)K} \sum_{t=1}^{T} f_t^*(y)] \le \frac{\eta'}{2} T G^2 + \frac{D^2}{2\eta'}$ On optimization, when we set $\eta' = \frac{D}{G\sqrt{T}} = \frac{R}{\frac{dc}{\delta}\sqrt{T}} = \frac{R\delta}{dc\sqrt{T}} = \eta \frac{\delta}{dc}$ $\Rightarrow \eta = \frac{R}{c_1/T}$ $\therefore E[\sum_{t=1}^{T} f_t^*(y_t) - \min_{y \in (1-\alpha)K} \sum_{t=1}^{T} f_t^*(y_t)] \le \frac{Rdc}{\delta} \sqrt{T}$ (23.3)

STEP 2: Connecting $f_t^*(y_t)$ to $f_t(y_t)$ Let us define a quantity called "EFFECTIVE LIPSCHITZ CONSTANT"- $L' := \frac{2c}{\alpha r}$

$$|f_t^*(y_t) - f_t(x_t)| \le |f_t^*(y_t) - f_t(y_t)| + |f_t(y_t) - f_t(x_t)|$$
(23.4)

The LHS in the inequality can be controlled by controlling both terms on RHS of equation (23.4).

For any $z \in (1-\alpha)K$, $\frac{\delta}{r} \le \alpha \le 1$, we have $|f_t^*(z) - f_t(z)| = |E_{V \sim uniform(B)}[f_t(z + \delta .v) - f_t(z)]| \le E_{V \sim uniform(B)}[|f_t(z + \delta .v) - f_t(z)|]$ From Lemma 23.1 we know that $(z + \delta . v) \in K$

From Lemma 23.2 we know that this difference is bounded as

 $|f_t^*(z) - f_t(z)| \le E_{V \sim uniform(B)}[\frac{2c}{\alpha r}||\delta v||] \le L'.\delta$ [: v is inside a unit ball]

The second term in RHS of equation (23.4) also can be bounded as above with the only difference that $x_t \in K$.

: $|f_t^*(y_t) - f_t(x_t)| \le L'.\delta + L'.\delta = 2L'.\delta$ Using this result on LHS of equation (23.3) appropriately gives

$$E[\sum_{t=1}^{T} (f_t(x_t) - 2L'.\delta) - \min_{y \in (1-\alpha)K} \sum_{t=1}^{T} (f_t(y) + L'.\delta)] \le \frac{Rdc}{\delta} \sqrt{T}$$

$$(23.5)$$

STEP 3: Connecting optimum over $(1 - \alpha)K$ to optimum over K. Applying the result in equation (23.2) to equation (23.5) gives $E[\sum_{t=1}^{T} f_t(x_t)] - \min_{x \in K} \sum_{t=1}^{T} f_t(x) \leq \frac{Rdc}{\delta} \sqrt{T} + 3L' \cdot \delta T + 2\alpha c T$ $\therefore E[Regret_T^{BGD}] \leq \frac{Rdc}{\delta} \sqrt{T} + \frac{6\delta cT}{\alpha r} + 2\alpha c T$ The expression is like $\frac{x}{\delta} + \frac{y\delta}{\alpha} + z\alpha$ $\delta = \sqrt[3]{\frac{x^2}{y.z}} = \sqrt[3]{\frac{rR^2d^2}{12T}}$ and $\alpha = \sqrt[3]{\frac{x.y}{z^2}} = \sqrt[3]{\frac{3Rd}{2r\sqrt{T}}}$ will give $E[Regret_T^{BGD}] \leq 3cT^{\frac{5}{6}}\sqrt[3]{\frac{dR}{r}}$

Theorem 23.6. If each $\{f_t\}$ is L-Lipschitz functions, then $E[Regret_T^{BGD}] \le 2T^{\frac{3}{4}} \sqrt[3]{3dRc(L+\frac{c}{r})}$

Proof: The proof follows from that of Theorem 23.4 with the difference that we can use the direct Lipschitz constant in step2.

23.4 Reshape K to avoid large $\frac{R}{r}$ ratio

We have got regret bound which is a dependent on $\frac{R}{r}$. This bound will become very bad when this ratio is large.

So as to avoid this, the convex set *K* (which is now $r.B \subseteq K \subseteq R.B$)can be put into "ISOTROPIC POSITION". ie. \exists an affine transformation $T : \mathbb{R}^d \to \mathbb{R}^d$ such that $1.B \subseteq T(K) \subseteq d.B$ There are efficient algorithms to find such a transformation *T* (approximately). eg.L.Lovasz and S.Vempala, in their work, guarantees a T such that $B \subseteq T(K) \subseteq 1.01B$ So,before applying the B G D algorithm, we aill apply this transformation on *K* so that we will get r' = 1 and R' = 1.01dLet $f'_t : T(K) \to \mathbb{R}$

In this new setting, $\forall y \in T(K), f'_t(y) := f_t(T^{-1}(y))$

Lemma 23.7. If f_t is L-Lipschitz over K and $R = Sup_{x \in K}||x||$, then f'_t is LR -Lipschitz over T(K).

After reshaping we will get r' = 1, R' = 1.01d and L' = LR. Then $E[Regret_T^{BGD}] \le 6T^{\frac{3}{4}}d(\sqrt{cLR} + c)$ for *L*-Lipschitz and $E[Regret_T^{BGD}] \le 6T^{\frac{5}{6}}dc$ without the *L*-Lipschitz condition

23.5 References

1)Online convex optimization in the bandit setting: gradient descent without a gradient by Abraham D. Flaxman, Adam Tauman Kalai and H. Brendan McMahan.

http://people.cs.uchicago.edu/~kalai/papers/bandit/bandit.pdf