E1 245: Online Prediction & Learning Fall 2014
Lecture 23 — October 30
Lecturer: Aditya Gopalan Scribe: Abhinav Das .N.V

23.1 Recap

In the last lecture we were analyzing the algorithm of Bandit Gradient Descent (B G D).The main
idea is to construct an approximate measure of the gradient of the loss functions and work as in
mirror descent. B G D is a method of online convex optimization with bandit feedback. The
problem setting is:

The convex set is K C RY,

There is a sequence of loss functions f, f2, f3.....fr : K — R . But, for simplicity, we have

already assumed that the functions are bounded as f;€ [—c,c] ,Vi=1,2,...T wherec € R,..

vVt =1,2,...T , algorithm picks an element w; € K .

At each time algorithm observes f;(w;) € R .

B G D Algorithm:

Parameters:o, 8,1 > 0

There is a measure of inner and outer radius of K ie. 3 ,R :r.B < K < R.B where

B =unit ball (RY) . ie. B={x € RY: ||x|| < 1}.

Initialize y; = 0.

Vt =1,2,..T u; ~ uniform(S) where S =unit sphere (R) . ie. S = {x € R? : ||x|| = 1}.

Play x; = y; + 0.u; .

Update as y, , ; = [T(1-a)x (v — N-i (x1).-14r) where TTu (y) = argminyea|lx —yl|2.

Also we have established the result

d .
EU,rvuniform(S) [fl (yt + 61/‘2‘)%3] = szﬁ (yt) (23.1)

where f*(x) = Ey uniform(p)Lf (x+ 6.v)] and d is the dimension of K.
Through a lemma we have the result that ,the optimum of ¥, £,
(ie.the minimizer of the sum of lossfunctions ) over (1 — @)K is near the optimum over K.

T T
minge(1—ak 3 Ji(x) < 20T +mingeg Y fi(x) (23.2)
=1 =1

23.2 Useful Lemmas to find the expected regret

Lemma 23.1. Vx € (1 — a)K,
x+arBCK
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Proof: Letx € (1 —a)K, then
(1—-)K+arBC (1—a)K+a.K CK[. rBCK]
0

This lemma helps in saying that, whenever your perturbation u; is controlled within a limit,your
x; = yr + 6.U; will be within K.

Lemma 23.2. [Controlling how much f; changes over points in (1 — @)K and K]
Vxe (l—a)K,y €Kk,
A1) = A < (G5)- =yl

Proof: Letx € (1 —a)K,y €K,
y—x=A
casel:If ||A|| > a.r ,then
YA
(121.20) > 2¢ > |£,(x) — £ )]
case 2:If ||A|| < or ,then
let us define z := x + ﬁar [ie. z is apoint in the direction of (y —x) and beyond y.]
So y divides the length ar from x to z in the ratio ||A|| : (ar —||Al]).
oy = Ll (121,

or

But, by convexity of f;,

£0) < W20y 4 (1- 181 £y = frwy 4 120 (7 (2) — f))
= 1) = fi0)] < (2).[[x—»]

O
Lemma 23.3. [Correctness of B G D]
Whenever% <oa<lx €K Vt>1
Proof: By definition,y; € (1 — a)K.
x €y +8.5SCy,+8.BCy,+arB[. SCBand ar> §]
From lemma 23.1 x; € K.
O

23.3 Theorems

Theorem 23.4. The expected regret of B G D inT rounds (with appropriate parameter values for
o,0,n)is

O(T%.c.{/4R)
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Proof: STEP 1: Analyze regret w.r.t the points {y; },loss functions { f;*} and decision set
(1-—a)K.
We know that f*(x) = Ey i form(p) [f (x + 8.v)].
Define g; := fi(y; + 5.u,).u,.%
Through equation (23.1) we have
Elgi/yi] = Vi ()
Consider Stochastic Gradient Descent.
Loss functions are { f;"},decision set is (1 — o¢)K and step size ' :=n
Initialize y; = 0.
Ve > 1, yer1 = [1-a)x(r —1'-8) and E[g; /yi] = V£ (1)

Theorem 23.5. [Stochastic Gradient Descent (S G D)]
Suppose C1,C>,C3... : K — R is a sequence of convex,differentiable functions on the convex
set K.
LetOCKw;=0andVt>1,n>0.
Wit = [1x(wr — n.g:) where E[g;/w;] = VCi(wy)
l|lg:|| < G almost surely, D := Supyek||x]||-
Then E[Y, | C;(w;) — minyex L— G;(w)] < ITG* + %

QUS>

We can apply the aboveteorem of S G D with {C; := f;"},
St o] = St el Ao - ) ]
u; 1S a unit vector]|

and Sup.c(1—q)k||x|[2 < R =: D [Outer radius of K]
Then we get, /

E[XL, £ () = minye(_ax Ty /7 ()] < $TG? + 25

On optimization,when we set
D _ R RS

K=(1-a)K,
[.

{w ==y},
< % : G [." f; is bounded and

M= GV T T T T ng
=>n= c\Rﬁ
Lo, _ Lo Rdc
E[Y £ () =minyei—apx Y fFO0)] < =5~ VT (23.3)
t=1 =1

STEP 2: Connecting f*(y;) to f;(y;)
Let us define a quantity called “EFFECTIVE LIPSCHITZ CONSTANT”-L/ := 2¢

ar

17 ) = fr ) | S U7 ) = fi ) [+ 1o ) — i ()| (23.4)

The LHS in the inequality can be controlled by controlling both terms on RHS of
equation (23.4).

For any z € (1 — a)K, % < a < 1,we have

|ft>!< (Z) - fl(Z)l = |EV~unif0rm(B) [ft (Z + 6V) - fz(Z)] | < Eunniform(B) Hfl(z + 6‘}) - fl(z) H
From Lemma 23.1 we know that (z46.v) € K

From Lemma 23.2 we know that this difference is bounded as
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I (2) = fi(2)] < Eunmform [ <||6v[|]] < L'.6 [ vis inside a unit ball]

The second term in RHS of equatlon (23.4) also can be bounded as above with the only
difference that x; € K .

00— file)| SL.6+L.6 =2L".6

Using this result on LHS of equation (23.3) appropriately gives

~

4 Rdc
Z fi(x) —2L'.8) — min,, Z V+L8)] < —VT (23.5)

STEP 3: Connecting optimum over (1 — ¢¢)K to optimum over K.
Applying the result in equation (23.2) to equation (23.5) gives
E[YL | fi(x)] —minyex T fi(x) < B4\/T 430 .8T +2acT
. E[Regret?P] < I%\/T%— 62—? +2acT

The expression is like 5 + % % 4 zat

2
6= \/;‘Z . ’fﬁ{ and o0 = 3/ );2 3Rd w1ll give

E[Regret26P] < 3cTé |/ &

Theorem 23.6. If each {f;} is L-Lipschitz functions,then
E[RegretBCP] < 2T Y 3dRc(L+ %)

Proof: The proof follows from that of Theorem 23.4 with the difference that we can use the direct

Lipschitz constant in step2.
O

23.4 Reshape K to avoid large § ratio

We have got regret bound which is a dependent on 1;. This bound will become very bad when this
ratio is large.
So as to avoid this, the convex set K (which is now .B C K C R.B)can be put into
“ISOTROPIC POSITION”.
ie.3 an affine transformationT : R? — R? such that
I.LBCT(K)Cd.B
There are efficient algorithms to find such a transformation 7' (approximately).
eg.L.Lovasz and S.Vempala, in their work, guarantees a T such that
BCT(K)C1.01B
So,before applying the B G D algorithm,we aill apply this transformation on K so that we
will get
¥=1and R =1.01d
Let f, : T(K) = R
In this new setting,Vy € T(K), f; (y) := f,(T1(y))
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Lemma 23.7. If f; is L-Lipschitz over K and R = Supycx||x||.then f, is LR -Lipschitz over T (K).

After reshaping we will get ¥/ =1, R’ = 1.01d and L' = LR. Then
E[Regret86P] < 6Tid (v cLR + ¢) for L-Lipschitz and
E[Regret26P] < 6T § dc without the L-Lipschitz condition

23.5 References

1)Online convex optimization in the bandit setting: gradient descent without a gradient by Abra-
ham D. Flaxman, Adam Tauman Kalai and H. Brendan McMahan.

http://people.cs.uchicago.edu/~kalai/papers/bandit/bandit.pdf
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