
E1 245: Online Prediction & Learning Fall 2014

Lecture 2 — August 7
Lecturer: Aditya Gopalan Scribe: Indu John

2.1 Recap
In the last class, we described the MAJORITY algorithm(MAJ) for 1-bit prediction and established
its mistake bound, under the assumption that there exists a perfect expert who makes no mistakes.

Today we will see a more general algorithm namely WEIGHTED MAJORITY which makes
no such assumptions. We also introduce the general model of Prediction with expert advice and
define a notion of performance called Regret for any algorithm in this setup. Finally, we look at
the EXPONENTIAL WEIGHTS prediction algorithm which can be shown to perform well with
respect to regret minimization.

Exercise : We showed that the MAJORITY algorithm makes at most log2 N mistakes using
the advice of N experts whenever the best expert makes no mistakes. Show that a straightforward
modification of MAJORITY makes at most O((m+1) log2 N) mistakes when the best expert makes
m≥ 0 mistakes.

We want to get rid of any assumptions on the number of mistakes made by the experts. Also,
we would like to bring down the upper bound on number of mistakes made by the algorithm. Let’s
look at the WEIGHTED MAJORITY algorithm that achieves both.

2.2 Weighted majority algorithm

Algorithm 1 Weighted Majority(W −MAJ)
1: Parameter: ε ∈ [0,1]
2: Initialize : the weight for expert i, wi,0 = 1 ∀i
3: for t = 1,2,3, ... do
4: Predict

p̂t =

{
1 if ∑i: fi,t=1 wi,t−1 ≥ ∑i: fi,t=0 wi,t−1

0 otherwise

5: Observe yt
6: wi,t = wi,t−1(1− ε)I{ fi,t 6=yt} ∀i

Note that when ε = 1, this algorithm becomes the same as MAJORITY. When an expert makes
a wrong prediction, his weight is set to 0(equivalent to throwing him out).

2-1

E1 245 Lecture 2 — August 7 Fall 2014

Theorem 2.1 (Mistake bound for W −MAJ). Let ε ∈
[
0, 1

2

]
. Then, for each expert i,

MT (W −MAJ)≤ 2(1+ ε)MT (i)+2
logN

ε

where MT (W −MAJ) is the number of mistakes of W −MAJ upto time T , MT (i) is the number of
mistakes of expert i upto time T .
This implies,

MT (W −MAJ)≤ 2(1+ ε)
N

min
i=1

MT (i)+2
logN

ε

Proof: We will use an argument using potential functions to prove the theorem. Define,

Φt :=
N

∑
i=1

wi,t for t = 1,2, ...,T.

We will track the evolution of Φt with t.
At the beginning, we have, Φ0 = N.
Note that,

(1) ΦT ≥ wi,T = wi,0(1− ε)MT (i) = 1(1− ε)MT (i)

(2) Suppose W −MAJ predicts wrongly at time t. Then, at least half the total weight goes
down by (1− ε). Therefore,

Φt+1 ≤
Φt

2
+

Φt

2
(1− ε)

= Φt

(
1− ε

2

)
⇒ΦT ≤ Φ0

(
1− ε

2

)MT (W−MAJ)
= N

(
1− ε

2

)MT (W−MAJ)

From (1) and (2),

N
(

1− ε

2

)MT (W−MAJ)
≥ (1− ε)MT (i)

⇒−logN +MT (W −MAJ)log
(

1
1− ε

2

)
≤ MT (i)log

(
1

1− ε

)

⇒MT (W −MAJ) ≤ MT (i)

 log 1
1−ε

log 1
1− ε

2

+
logN

log
(

1
1− ε

2

)
Using the inequalities

log(1+ x) ≤ x ∀x≥ 0,

−log(1− x) ≤ x+ x2 ∀x ∈
[

0,
1
2

]
,

2-2

E1 245 Lecture 2 — August 7 Fall 2014

we obtain
MT (W −MAJ)≤ 2(1+ ε)MT (i)+

2
ε

logN

�

Note on tuning the parameter ε: It is easy to see that the optimal ε which gives the tighest upper
bound is

√
logN
MT (i)

. With this ε , the bound becomes 222MT (i)+4
√

MT (i)logN.
In general, the 222 multiplying MT (i) can’t be eliminated without introducing randomness in the
algorithm.

2.3 Prediction with expert advice
The general model for prediction with expert advice is the following. We have

• a Decision space D ,

• an Outcome space Y ,

• a Loss function l : D×Y → R

• the set of experts E

At each round t = 1,2, ...,

• Environment picks yt ∈ Y

• Algorithm receives expert advice (fi,t)
N
i=1, fi,t ∈D

• Algorithm predicts p̂t ∈D

• Algorithm sees yt

• Algorithm suffers loss for current round : l(p̂t ,yt)

Examples:

(1) 1-bit prediction
D = Y = {0,1}
l(p,y) = I{p 6= y} (“0-1” loss)

(2) Online regression
Here we want to fit a function to observed data.
X ⊆ Rd

D = some class of functions g : Rd → R. eg., linear functions, polynomials of degree 5
E = D
Y = R

2-3

E1 245 Lecture 2 — August 7 Fall 2014

• Environment picks (xt ∈X ,yt ∈ Y)

• xt is revealed to algorithm

• Each expert g ∈ E recommends g(xt)

• Algorithm predicts ĝt ∈D

• Algorithm suffers loss l(ĝt ,(xt ,yt)). eg. in the case of least squares regression,
l(ĝt ,(xt ,yt)) = (ĝt(xt)− yt)

2

The goal of the algorithm is to minimize the regret

Rt = max
i∈E

Ri,t ,

where Ri,t :=
t

∑
s=1

l(p̂s,ys)−
t

∑
s=1

l(fi,s,ys)

The regret can alternatively be expressed as

Rt =
t

∑
s=1

l(p̂s,ys)−min
i∈E

t

∑
s=1

l(fi,s,ys),

the difference between the cumulative loss of the algorithm and the cumulative loss of the best
expert.

It would be nice to have Rt = o(t), or equivalently, Rt
t → 0 as t → ∞. In other words, the

algorithm ‘learns’ the best strategy over time. This property is known as “Hannan consistency”.
We now introduce the EXPONENTIAL WEIGHTS algorithm which performs very well with

respect to regret minimization when the loss functions are convex.

2.4 Exponential weights algorithm
Let the decisions and losses be convex. i.e., D is a convex set and l : D×Y →R is convex on D .

Algorithm 2 Exponential Weights(EXP−WT S)
1: Parameter : η > 0 (called learning rate)
2: Initialize : the weight for expert i, wi,0 = 1 ∀i
3: for t = 1,2,3, ... do
4: wi,t = e−η ∑

t−1
s=1 l(fi,s,ys)

5: Predict p̂t =
∑i∈E fi,twi,t

∑i∈E wi,t
(∈D since D is convex).

It may be noted that e−η in this algorithm plays the role of (1−ε) in the WEIGHTED MAJORITY
algorithm.

We will derive the regret bound for this algorithm in the next class.

2-4

References

[1] Nicolo Cesa-Bianchi and Gabor Lugosi, Prediction, Learning and Games, Chapter 2, Section
2.1. Cambridge University Press, 2006.

5

