
E1 245: Online Prediction & Learning Fall 2014

Lecture 3 — August 12
Lecturer: Aditya Gopalan Scribe: Aadirupa Saha

3.1 Recap
In the last lecture, we focused on expert advice based online learning algorithms, more specifically
Exponential Weights algorithm for convex decision spaces and loss functions. In this lecture, we
will study the regret guarantee of this algorithm, and also analyze the limitation of expert advice
based prediction models in a more general setting, in particular, for non-convex decision spaces
and loss functions.

3.2 Quick summary on convexity
1. A set X ⊆ Rd is said to be convex if ∀x,y ∈X , and λ ∈ [0,1],

λx+(1−λ )y ∈X .

2. Let X be a convex set, a function f : X 7→R is said to be convex if ∀x,y∈X , and λ ∈ [0,1],

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y).

3. Let X be a convex set, a function g : X 7→ R is said to be concave if (−g) is convex.

4. Let X be a convex set and σ > 0 be any constant. A function f : X 7→ R is said to be
σ -Exp concave if x 7−→ exp(−σ f (x)) is a concave function, ∀x ∈X .

5. Jensen’s Inequality (finite version): Let X be a convex set and f : X 7→ R be a convex
function. Consider λ1,λ2, . . . ,λN ∈ R s.t. λi ≥ 0 ∀i ∈ {1,2, . . . ,N}, and ∑

N
i=1 λi = 1. Then

for x1,x2, . . . ,xN ∈X ,

f (
N

∑
i=1

λixi)≤
N

∑
i=1

λi f (xi).

Jensen’s Inequality (general version): Let Z be a random variable taking values in X , then

f (E[Z])≤ E[ f (Z)].
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3.3 Exponential Weights Algorithm

Algorithm EXP-Wts
Inputs:

Set of expert indices: E
Convex decision space: D
Outcome space: Y
Loss function l : D×Y 7→ R+, l is convex on D

Parameter:
Learning rate η > 0

Initialize:
Weight on each expert i ∈ E , wi,0 := 1

For each round t = 1,2, . . .
– Environment chooses yt ∈ Y

– Experts’ decide ( fi,t)
|E |
i=1, fi,t ∈D

– Predict p̂t := ∑i∈E wi,t−1 fi,t
∑ j∈E w j,t−1

∈D

– Receive yt
– Incur loss l(p̂t ,yt)
– Re-weight each expert i ∈ E , wi,t := exp(−η ∑

t
s=1 l( fi,s,ys))

End

The regret of EXP-Wts algorithm w.r.t. the best expert in E , at the end of round T is

RT (EXP-Wts) :=
T

∑
t=1

l(p̂t ,yt)−min
i∈E

T

∑
t=1

l( fi,t ,yt)

Theorem 3.1. Let D be a convex decision space, Y be the outcome space, and l : D×Y 7→ [0,1]
be a convex loss function w.r.t. its first argument, then for EXP-Wts algorithm,

RT (EXP-Wts)≤ log |E |
η

+
ηT
8

.

In particular, setting η =

√
8log |E |

T ,

RT (EXP-Wts)≤
√

T
2

log |E |.

Remarks:

1. If the time horizon T is known in advance, with η =

√
8log |E |

T , the average per trial regret of

EXP-Wts algorithm RT (EXP-Wts)
T = O( 1√

T
)→ 0 as T → ∞.
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2. In general T is not known beforehand, however one can still get an O(
√

T ) regret bound
with time varying learning rate ηt =

1√
t , ∀t = 1,2, . . . which is independent of T . Another

approach to make η horizon free (i.e. independent of T ) is the so called “doubling trick”.

3. Convex losses are commonly used in the context of online learning problems as the corre-
sponding regret guarantees can be made sub-linear in T .

Proof of Theorem 3.1. We will use a potential function based argument to proof the result. Let us
consider the potential function Wt = ∑i∈E wi,t , ∀t ∈ {1,2, . . . ,T}. Clearly, W0 = |E |. Thus

log
(

Wt

Wt−1

)
= log

(
∑i∈E wi,t−1 exp(−η l( fi,t ,yt))

∑i∈E wi,t−1

)
= logE[exp(−ηX)], (3.1)

where X is a random variable s.t. P(X = l( fi,t ,yt)) =
wi,t−1

∑ j∈E w j,t−1
, ∀i ∈ E . Note that, since,

l : D×Y 7→ [0,1], X ∈ [0,1].

Lemma 3.2. Let X be a random variable s.t. X ∈ [a,b]. Then ∀z ∈ R,

logE[exp(zX)]≤ zE[X]+
z2(b−a)2

8
.

Now applying Lemma 3.2 in (3.1) with a = 0, b = 1, and z =−η we get,

log
(

Wt

Wt−1

)
≤ −ηE[X]+

η2

8

= −η ∑
i∈E

(
wi,t−1

∑ j∈E w j,t−1

)
l( fi,t ,yt)+

η2

8

= −η ∑
i∈E

(
wi,t−1

Wt−1

)
l( fi,t ,yt)+

η2

8

≤ −η l

(
∑
i∈E

(
wi,t−1

Wt−1

)
fi,t ,yt

)
+

η2

8
[ Since l is convex in its first argument.]

= −η l
((

∑i∈E wi,t−1 fi,t

∑ j∈E w j,t−1

)
,yt

)
+

η2

8

= −η l (p̂t ,yt)+
η2

8
.

Summing over t = 1,2, . . . ,T then gives

log
(

WT

W0

)
≤−η

T

∑
t=1

l (p̂t ,yt)+
η2T

8
. (3.2)
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Again,

log
(

WT

W0

)
= log

(
∑i∈E exp

(
−η ∑

T
t=1 l( fi,t ,yt)

)
|E |

)

= log

(
∑
i∈E

exp
(
−η

T

∑
t=1

l( fi,t ,yt)
))
− log |E |

≥ log

(
max
i∈E

(
exp
(
−η

T

∑
t=1

l( fi,t ,yt)
)))

− log |E |

= max
i∈E

(
log

(
exp
(
−η

T

∑
t=1

l( fi,t ,yt)
)))

− log |E |

= max
i∈E

(
−η

T

∑
t=1

l( fi,t ,yt)

)
− log |E |

= −min
i∈E

(
η

T

∑
t=1

l( fi,t ,yt)

)
− log |E |. (3.3)

Combining (3.2) and (3.3) we get

−min
i∈E

(
η

T

∑
t=1

l( fi,t ,yt)

)
− log |E | ≤ −η

T

∑
t=1

l (p̂t ,yt)+
η2T

8
.

Thus, RT (EXP-Wts) =
T

∑
t=1

l(p̂t ,yt)−min
i∈E

T

∑
t=1

l( fi,t ,yt)≤
log |E |

η
+

ηT
8

.

�

3.4 Online learning with non-convex losses/decisions
Consider the following setting of 1 bit prediction problem with expert advice:

• Decision space D = {0,1}

• Outcome space Y = {0,1}

• Set of two experts E = {0,1}, where f0,t = 0 and f1,t = 1, ∀t = 1,2, . . .

• 0-1 loss function l : D×Y 7→ [0,1] s.t. l(p̂,y) = 1(p̂ 6= q)
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Now, let us assume that we have a deterministic forecasting algorithm A which predicts p̂t ∈
{0,1}, and the environment sets yt = 1− pt in each round t = 1,2, . . . ,T . Clearly, ∑

T
t=1 l(p̂t ,yt)= T .

Moreover in each round t, only one of the expert suffers 1 unit of loss as yt ∈ {0,1}. Hence,
∑

T
t=1 l( f0,t ,yt) + l( f1,t ,yt) = T , and mini∈{0,1}∑

T
t=1 l( fi,t ,yt) ≤ T

2 . Thus regret of algorithm A
becomes

RT (A ) =
T

∑
t=1

l(p̂t ,yt)−min
i∈E

T

∑
t=1

l( fi,t ,yt)≥
T
2
.

Clearly RT (A )→ ∞ as T → ∞, and this leads to the conclusion that in the current setting, no
online learning algorithm can achieve a non-trivial regret guarantee which is sub-linear in T .

3.5 Next Lecture
In the next lecture, we will focus on randomized online prediction problems where in each round
the forecasting algorithm plays a distribution over decision space D , instead of making a single
deterministic prediction, and also analyze the regret guarantees of such algorithms with arbitrary
loss functions.
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