
E1 245: Online Prediction & Learning Fall 2014

Lecture 6 — August 21
Lecturer: Aditya Gopalan Scribe: Geethu Joseph

6.1 Recap
In the last lecture, we looked at the lower bound on the regret or minimax regret, for specific
loss function of absolute loss which is not an exp-concave function. We then moved to a specific
application called sequential probability estimation or source coding. In this lecture, we show
that for sequential probability estimation, with logarithmic loss, we can derive the exact minimax
optimum forecaster. We then construct a predictor using ExpWeights algorithm for the special case
of iid experts and derive the regret bound for the predictor.

6.2 Minimax regret for sequential probability estimation
The minimax regret is defined as, the regret of best prediction algorithm over all possible prediction
algorithms and environment outcomes, for a particular choice of loss function and a set of experts.
For sequential probability estimation problem, with logarithmic loss, minimax regret is

V
(N)
T = inf

p̂T
sup

yT∈YT

log

supf∈E
fT (y

T )

p̂T (yT )

 ,
where p̂T is a possible joint distribution on yT . The following theorem, due to Shtarkov [1], gives
the exact minimax forecaster for the above problem set-up.

Theorem 6.1. Let E be a class of experts, then,

V
(N)
T = inf

p̂T
sup

yT∈YT

log

supf∈E
fT (y

T )

p̂T (yT )


= sup

yT∈YT

log

supf∈E
fT (y

T )

p∗T (y
T )

 ,
where, pT is the normalized max-likelihood distribution defined as,

p∗T (y1, y2, . . . , yT ) =

sup
f∈E

fT (y1, y2, . . . , yT )∑
ŷT∈YT sup

f∈E
fT (ŷT )

.
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Proof: Consider a joint probability distribution pT , different from the optimal distribution p∗T .
Since pT 6= p∗T , they should differ for atleast two sequences in YT . This is because, we have a
constraint that sum of probabilities should add up to unity. Hence, there exist a sequence yT ∈ YT

such that p∗T (y
T ) > pT (y

T ). Then,

log

supf∈E
fT (y

T )

pT (yT )

 > log

supf∈E
fT (y

T )

p∗T (y
T )

 . (6.1)

Using the definition of p∗T , we simplify the right hand side of the inequality as

log

supf∈E
fT (y

T )

p∗T (y
T )

 = log

 ∑
ŷT∈YT

sup
f∈E

fT
(
ŷT
) .

Further, we note that the expression has no dependency on the sequence yT . Thus,

log

supf∈E
fT (y

T )

p∗T (y
T )

 = sup
zT∈YT

log

supf∈E
fT (z

T )

p∗T (z
T )

 .
Substituting in (6.1), we have, for every pT 6= p∗T , there exist a sequence yT ∈ YT , such that

log

supf∈E
fT (y

T )

pT (yT )

 > sup
zT∈YT

log

supf∈E
fT (z

T )

p∗T (z
T )

 .
This completes the proof. �

Thus, we have defined the minimax distribution explicitly and the exact conditional probabilities
are

p∗T (y|y1, y2, . . . , yt−1) =
p∗T (y1, y2, . . . , yt−1, y)

p∗T (y1, y2, . . . , yt−1)
. (6.2)

We also point out two major issues associated with the above solution. One, computational com-
plexity in calculating the denominator term in (6.2) increases exponentially with number of rounds.
There are NT terms in the denominator for the T th round. Second, the conditional distribution
p∗T (.|y1, y2, . . . , yt−1), t = 1, 2, . . . , T highly depends on T , and in general,

p∗t−1(y
t−1) 6=

∑
y∈Y

p∗(y1, y2, . . . , yt−1, y).
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6.2.1 Construction of predictor: Laplace mixture
In this section, we construct a prediction algorithm for sequential probability estimation prob-
lem using ExpWeights algorithm(for the class of all constant experts), assuming iid experts. The
Laplace mixture forecaster was introduced, in the context of universal coding, by Davisson [2], and
also investigated by Rissanen [3]. We note that logarithmic loss function is σ−exp-concave func-
tion, ∀σ ∈ [0, 1]. We assume that ExpWeights learning rate η = σ = 1. Thus, the the exponentially
weighted average forecaster assigns, to each sequence yt,

p̂t(yt|yt−1) =
∑

f∈E ft(yt|yt−1)e−Lf (y
t−1)∑

f∈E e
−Lf (yt−1)

=

∑
f∈E ft(yt|yt−1)ft−1(yt−1)∑

f∈E ft−1(y
t−1)

=

∑
f∈E ft(y

t)∑
f∈E ft−1(y

t−1)
.

Thus, the joint probability distribution of yT is given by,

p̂T (y
T ) =

T∏
t=1

p̂t(yt|yt−1)

=

∑
f∈E fT (y

T )∑
f∈E f0(y

0)

=
1

N

∑
f∈E

fT (y
T ). (6.3)

Thus, it turns out that when there are finite number of experts, probability assigned by the predictor
is the the the average of the probabilities assigned by each expert.

This idea may be extended to the case in which the experts are uncountably infinite in num-
bers. Consider the set of experts as all constant experts, each one of them being all possible iid
conditional distributions on Y . We model them, using a collection of Bernoulli random variables,
with parameter q, where q ∈ [0, 1]. Then, we have,

fT (y
T ) = qn1(1− q)n2 , (6.4)

and extending (6.3) to this case, we get

p̂T (y
T ) =

∫ 1

0

qn1(1− q)n2dq, (6.5)

where n1 and n2 are the number of 1’s and 0’s in the sequence respectively, n1 =
∑T

t=1 yt, and
n2 = T − n1. We present a lemma to further simplify the prediction.
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Lemma 6.2. For any two integers, n1 and n2,∫ 1

0

qn1(1− q)n2dq =
1

(n1 + n2 + 1)
(
n1+n2

n1

) ,
where q ∈ [0, 1].

Using the above lemma in (6.5), we have

p̂T (y
T ) =

1

(T + 1)
(
T
n1

) . (6.6)

Thus, the conditional probability of a tth element of sequence being 1 is given by,

p(1|y1, y2, . . . , yt−1) =
p(y1, y2, . . . , yt−1, 1)

p(y1, y2, . . . , yt−1)

=

1

(t+1)( t
n1+1)
1

t(t−1
n1
)

=
n1 + 1

t+ 1
. (6.7)

Similarly, we get,

p(0|y1, y2, . . . , yt−1) =
n2 + 1

t+ 1
. (6.8)

Combining (6.7) and (6.8), we get

p̂t(y|y1, y2, . . . , lt−1) =
1 +

∑t−1
i=1 I {yi = y}
t+ 1

.

The above derived forecaster is called the Laplace mixture forecaster. The rule is also called add-
one smoothing, since it includes a one in the numerator so that numerator never vanishes. This
prevents the loss function from blowing up to infinity.

Theorem 6.3. Regret for Laplace mixture is

sup
tT∈0,1T

RegretT (Laplace) ≤ log(1 + T ).

Proof: Using (6.4) and (6.5) in the definition of minimax regret,

RegretT (Laplace) = sup
yT∈YT

log

supf∈E
fT (y

T )

p̂T (yT )


= sup

yT∈YT

sup
q∈[0,1]

log

[
qn1(1− q)n2∫ T

0
qn1(1− q)n2dq

]
.
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Substituting from (6.6),

RegretT (Laplace) = sup
yT∈YT

sup
q∈[0,1]

log

qn1(1− q)n2

1

(T+1)( T
n1
)

 .
To solve the problem of optimization with respect to q, consider the function,

g(q) = log [qn1(1− q)n2 ]

= n1 log(q) + n2 log(1− q).

Let q∗ ∈ [0, 1] be the unique optimum value that maximizes the concave function g(q). Then, the
first derivative of the function vanishes at q∗

dg
dq

(q∗) = 0.

This gives,
n1

q∗
− n2

1− q∗
= 0,

and thus, q∗ = n1

T
. Substituting back in (6.2.1),

RegretT (Laplace) = sup
yT∈YT

log
[(n1

T

)n1
(n2

T

)n2
]
+ log

[
(T + 1)

(
T

n1

)]
= sup

yT∈YT

log

[(
T

n1

)(n1

T

)n1
(n2

T

)n2
]
+ log(T + 1)

≤ log(T + 1).

Last steps follows from the fact that log
[(

T
n1

) (
n1

T

)n1
(
n2

T

)n2
]
< 0, since

(
T
n1

) (
n1

T

)n1
(
n2

T

)n2 is the
probability of getting n1 heads when a coin is tossed T times, with probability of getting a head in
each trail being n1

T
. This completes the proof. �

We also add some concluding remarks by stating results for the some other cases:

1. If Beta(1
2
, 1
2
) is used instead of uniform distribution in [0, 1] (which is Beta(1,1) distribution)

on iid experts, add-1/2 estimator or Krichevsky-Trofimov predictor is obtained. In this case,
distribution on q is,

f(q) =
1

π
√
q(1− q)

.

The prediction algorithm then simplifies to,

p̂t(1|yt−1) =
1
2
+
∑t−1

s=1 I {yS = 1}
t

,
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and regret bound is given by

RegretT (K − T ) ≤
1

2
log T + const.

This is the best regret bound that can be obtained for a set of iid distribution on experts Y .

2. Furthermore, if the iid condition on experts is relaxed to set of all kth order Markov chains
on Y , denoted by Ek, the regret bound modifies to

RegretT (Ek; add 1/2 rule) ≤ Nk(N − 1)

2
log T + const
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