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Lecture 7 — August 26
Lecturer: Aditya Gopalan Scribe: Madhavaraj A

7.1 Introduction
In this lecture, we will discuss about sequential portfolio allocation strategies for investing in the
stock markets. The ultimate goal of the portfolio allocation algorithm is to distribute one’s wealth
at each trading instants among a certain number of stocks so as to get maximal return among pos-
sible classes of investment strategies.

We shall discuss about the following algorithms,
(i) Buy and hold strategy
(ii) Constantly rebalancing portfolio strategy (CRP)
(iii) Cover’s universal portfolio algorithm

7.2 Definitions and sequential investment setting
Suppose we have n stocks in the stock market, then at every round t, we can define a market vector
Xt = (x1,t ,x2,t , ....,xn,t) for all t = 1,2,3, ... where,

xi,t =
Closing price of stock i at the end of round t

Opening price of stock i at the start of round t
≥ 0

(i.e., Investment of Rs. 1 at round t on stock i gives a return of xi,t at the end of round t)
Here, we consider arbitrary {Xt} and no assumption is made on its choice.

Alternatively, statistical models of the markets can be viewed as a Geometric random walk or
Brownian motion, where, xi,t = exp(Random Walk(t)).

Investment decision at round t is given by, Qt = (Q1,t ,Q2,t , ....,Qn,t) ∈ ∆m such that,
n
∑

i=1
Qi,t = 1

Qt is the fraction of current wealth invested at round t. In general,
Qt = Qt (X1,X2, ....,Xt−1) = Qt

(
X t−1)

Investment Algorithm Q is defined as the sequence Q1,Q2, ....,Qt
Q : Rm×(t−1)→ ∆m
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7.3 Buy and Hold Strategy
This is a simple algorithm where we divide the initial money according to Q1 ∈ ∆m and sit idle.

Wealth after T rounds = ST (QXT )

=
n
∑

i=1
Qi,t

T
∏

t=1
xi,t

7.4 Constantly Rebalancing Portfolio Strategy
In this algorithm, the wealth at each round is equally distributed across all stocks irrespective of
X t−1. i.e., Qt

(
X t−1)= b = (b1,b2, ....,bn) ∈ ∆m

e.g., m = 2, {Xt}=
(
1,1

2

)
(1,2)

(
1,1

2

)
(1,2) ..... Let b =

(1
2 ,

1
2

)
Then wealth after T rounds is given by,

ST
(
bXT)= 1×

(1
2 ×1+ 1

2 ×
1
2

)
×
(1

2 ×1+ 1
2 ×2

)
× ....

=
(9

8

) T
2

In the buy and hold strategy, the investor will not make any money in the above example, whereas
in the CRP strategy, the investor makes some profit. To compare the performance of an algorithm
with respect to all possible classes of strategies Q, we define wealth ratio of an algorithm, with
respect to Q as,

=
max
XT log

(
sup

q ∈ Q
ST (q,XT )

ST (Algo,XT )

)
=

sup
XT

sup
q ∈ Q

T
∑

t=1
log 1
〈Xt ,pt〉 −

T
∑

t=1
log 1
〈Xt ,qt〉

The above expression can also be viewed as Regret of the algorithm with following setting,
(i) Decision space D = ∆m = all distribution on unit simplex
(ii) Observed output y = Rm

+ Xt ∈ Rm
+

(iii)Loss function l(d,y) =− log〈d,y〉

7.5 Cover’s Universal Portfolio Algorithm
Goal: To compete with all the CRPs, i.e., Q = CRP

Intuition: Use exponential weights algorithm (η = 1) with log-loss (as it is 1-exp-concave) over
all CRPs in Q.

Weight of CRP (b ∈ ∆m) at time t is given by,
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Wt(b) = exp
(
−η

t−1
∑

s=1
log 1
〈b,Xs〉

)
=

t−1
∏

s=1
〈b,Xs〉

= St−1(b,X t−1)

Universal portfolio decision at time t is given by,

pt =
∫

∆m

b Wt(b)∫
∆m

µ Wt(b′) db’ µ db (µ is uniform distribution on the simplex ∆m)

=

∫
∆m

b St−1(b,X t−1) µ db∫
∆m

St−1(b′,X t−1) µ db’

The total wealth after T rounds is expressed as,

ST (UP, XT ) =
T
∏

t=1
〈pt ,Xt〉

=
T
∏

t=1

∫
∆m
〈b,Xt〉 St−1(b,X t−1) µ db∫
∆m

St−1(b,X t−1) µ db

The above telescopic series reduces to,

=
∫

∆m

ST (b,XT ) µ db

Interpretation: Universal portfolio algorithm performs buy and hold strategy across all CRP.

Notes:

(i) UP is not efficient and is computationally infeasible as integration over ∆m takes much time
(of order exp(m)). However, we can make grids on ∆m with

( 1
δ

)m
grid points for computation.

Efficient implementation of this algorithm is done in [1].

(ii) We will see in online convex optimization (in the next few lectures) that there exists simpler
and efficient universal portfolio algorithms only with slightly worse regret.

Theorem: Regret of Cover’s UP is given by,
sup

XT ∈ Rm×T RT (UP,XT )6 (m−1) logT + constant

Proof: Technique from [2]

Let the best performing CRP with respect to XT be b∗ ∈ ∆m. Then, the total wealth is given by,

ST (b∗, XT ) =
sup

b ∈ ∆m
ST (b, XT )
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Let us define neighbourhood of b∗ for any ε > 0 as,

Ballε(b∗) = {(1− ε)b∗+ εb : b ∈ ∆m}

Properties of Neighbourhood of ε

Lemma 1: Volume(Ballε(b∗)) = εm−1Volume(∆m)
For any S⊂ ∆m, Volume(S) =

∫
S

µ db

Lemma 2: ∀b ∈ Ballε(b∗)
ST (b, XT )> ST (b∗, XT )(1− ε)T

Consider,
ST (UP, XT ) =

∫
∆m

ST (b,XT ) µ db

>
∫

Ballε (b∗)
ST (b,XT ) µ db

>
∫

Ballε (b∗)
ST (b∗,XT ) (1− ε)T

µ db

= ST (b∗,XT ) (1− ε)T εm−1

Therefore,

log ST (b∗,XT )
ST (UP,XT )

= Regret(UP,XT )

6 (m−1) log 1
ε
+T log 1

1−ε

Setting ε = 1
T we get,

Regret(UP,XT )6 (m−1) logT +T log
( T

T−1

)
7.6 Next Lecture : Online convex optimization
In the next lecture, we will look at online convex optimization algorithms.

7.6.1 General Framework
(i) Rounds t = 1,2,3, ....
(ii) Player plays from decision space X ∈ Rd (a convex set)
(iii) At each round t,

(a) Play Xt ∈ X
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(b) Receive a convex function, ft : X → R
(c) Suffers loss, ft(Xt)

(iv) The goal is to minimize regret given by,

RT =
T
∑

t=1
ft(Xt)−

inf
X∗ ∈ X

T
∑

t=1
ft(X∗)

General properties of online convex optimization techniques

(a) Typically ∞ decisions.
(b) More geometric intuition
(c) Can leverage convex optimization algorithms
(d) Originated in recent times from [3]

7.6.2 Application 1: Prediction with N experts on convex decision sets
Decision space, X = ∆m
Loss function, ft(Z) = l (〈Z, expert advice at t〉 , yt)

7.6.3 Application 2: Online shortest path

This is a combinatorial setting (which can also be viewed as N expert problem) where,
(a) Each expert is a path from S to T .
(b) In general, number of paths is exponential to the network size.
(c) Costs on the edges are chosen by nature at each step.
(d) Upon playing a path, the algorithm gets to see costs of all edges.

A naive application of Exp-Wts is expensive since there are a large number of experts. One can be
much smarter and consider playing points from the space of all distributions on S-T paths, which
lies in the so-called ” f low polytope” (this is via network flow theory) which lies in Euclidean
space of dimension #edges� #paths. This puts the problem in the online Convex Optimization
setting.
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