
E1 245: Online Prediction & Learning Fall 2014

Lecture 8 — Aug 28
Lecturer: Aditya Gopalan Scribe: Ganesh Ghalme

8.1 Online convex optimization

8.1.1 General algorithm

Algorithm 1: General Algorithm Template
Input: convex setK 2 Rd

1 At each time t= 1,2,3,... Algorithm picks wt 2K
2 Loss at time t , ft :K ! R is returned by the environment.
3 Algorithm’s loss is lALG = ft(wt) Where setK is a convex set and function ft are convex functions

on k.

8.1.2 Examples
1. Prediction with experts.

2. Online shortest path.

3. Portfolio selection(sequential investment)K =∆m where ∆m is the unit simplex inRm; ft(Θ)=
�log(Θ;xt) where Θ 2 ∆m and xt is market vector.

4. Online linear regression(OLR): Given xi 2 R
d; yi 2 R; K : Rd ! R ( K is a set of

all linear functions). OLR finds best linear map from input to output when information
(x1;y1);(x2;y2);(x3;y3)::: is revealed sequentially. Prediction at time t is ŷt = hŵt ; xti and
loss at time t is ft(wt) = jŷt � yt j

5. Non online (Standard) convex optimization ft = f 8t i.e. loss function is independent of

time. Here regret is RT (w) =
t
∑

i=1
ft(wt)�

t
∑

i=1
ft(w) where w 2K and RT = supw2K RT (w)

One of the simplest techniques can be to select the choice which incur lowest loss in the past.

8.1.3 Follow The Leader (FTL)
Note: In the problem of prediction with experts, this corresponds to picking the best expert so far.
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Algorithm 2: FTL

1 8t; wt 2 argminw2K
t�1
∑

s=1
fs(w)

8.1.4 General regret bound for FTL

Lemma 1 : 8u 2K ; RT
FT L(u)�

T
∑

i=1
[ ft(wt)� ft(wt+1)]

Proof: By induction on t = 1,2,3,...
Base case: T = 1
We need to show

T
∑

i=1
[ ft(wt)� ft(u)]�

T
∑

i=1
[ ft(wt)� ft(wt+1)]i:e ft(wt+1)� ft(u)

put T = 1 =) f1(W2)� f1(u) 8u 2K

Induction Step:Assuming its true for t = τ i:e:[
τ

∑
i=1

ft(wt+1)�
τ

∑
i=1

ft(u)] and proving for t = (τ +1)

τ

∑
i=1

ft(wt+1)+ fτ+1(wτ+2)�
τ

∑
i=1

ft(u)+ fτ+1(wτ+2)

=)
τ+1
∑

i=1
ft(wt+2) = minw2K

τ+1
∑

t=1
ft(wt+1)

τ+1
∑

i=1
ft(wt+2)�

τ+1
∑

t=1
ft(u) 8u 2K

8.1.5 Application: FTL for online quadratic approximation
1. Setup:
At each point ft(w) = 1=2� jjw� zt jj

2 zt 2 R
d

RT =
T
∑

t=1
jjwt � zt jj

2=2�min
T
∑

t=1
jjwt � zt jj

2=2

FTL prediction at time t
wt = argminw2K jjw� zsjj

2

= centroid (z1;z2;z3; :::;zt�1)

= 1=(t�1)�
t�1
∑

s=1
zs

Using lemma 1 i.e. RFT L
T �

T
∑

t=1
( ft(wt)� ft(wt+1))

= 1=2�
T
∑

t=1
[jjwt � zt jj

2�jjwt+1� zt jj
2]

= 1=2�
T
∑

t=1
[jjwt � zt jj

2�jj((t�1)wt + zt)=t� zt jj
2]
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= 1=2�
T
∑

t=1
[1� (1�1=t)]2jjwt � zt jj

2

�
T
∑

t=1
1=t � jjwt � zt jj

Let L : maxt jjzt jj. Since wt is the average of z1; :::;zt1 we have that jjwt jj � L and therefore, by the
triangle inequality, jjwtzt jj � 2L. We have therefore obtained:

RFT L
T �

T
∑

t=1
( ft(wt)� ft(wt+1))� (2L2)

T
∑

t=1
(1=t) =) RFT L

T � (2L)2(1+ logT )

8.1.6 Bad case: FTL with linear loss function
letK = [-1,1] linear losses ft(wt) = hzt ;wti where
zt =�0:5;1;�1;1;�1; :::
Loss minimizing strategy: Loss of point 0 inK is 0
Predictions of FTL: wi = 1;�1;1;�1;1;�1:::
T
∑

t=1
ft(wt) = 1+1+1+1:::+1 = T, so cumulative loss of FTL is O(T),

Predictions not stable due to over-fitting in case of linear losses , to stabilize the predictions we can
introduce following techniques.

1. Follow the perturbed leader(FTPL)[2]:Adding artificial noise to objective function

At time t, wt = argminw2K [
t�1
∑

s=1
fs(w)+Noise(t)]

2. Follow the regularized leader(FTRL)[1]: Adding a regularization term to the objective func-
tion

At time t, wt = argminw2K [
t�1
∑

s=1
fs(w)+Rt(w)]

NOTE: FTL does very well for quadratic losses and does bad for the linear losses, so the curvature
of the losses is the key.

8.1.7 Follow The Regularized Leader (FTRL)

Algorithm 3: FTRL General template
Input: R :K ! R, and linear loss function

Output: 8t, FTRL chooses, wt = argminw2Rd

t�1
∑

s=1
fs(w)+R(w)

Key ingredient in FTRL is regularizer, R :K ! R, Different choices of the regularizer R lead
to different specialized algorithms and different regret performance.
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1. Using regularizer jj:jj22 and assuming linear cost functions i. e. hzt ;wi
Finding the optimum value of wt ,

Algorithm 4: FTRL with jj:jj22 regularizer
Input: K = Rd ; Rη(w) = jjwjj22=(2�η), and linear loss function

Output: At time t, FTRL chooses, wt = argminw2Rd [
t�1
∑

s=1
hzs;wi+ jjwjj2=(2�η)]

t�1

∑
s=1

zs +wt=η = 0 =) wt =�η

t�1

∑
s=1

zs

wt = wt�1�η �∇ ft�1(wt�1)

this rule is also called Online Gradient Descent. We shall re-visit the Online Gradient Descent rule
for general convex functions later.

2. Using Entropic Regularizer on simplex:

Algorithm 5: FTRL with entropic regularizer

Input: K = ∆d ; R(w) = (1=η)�
d
∑

i=1
wilog(wi) =�H(w)=η , and linear loss function.

Output: At time t, FTRL chooses, wt = argminw2Rd [
t�1
∑

s=1
hzs;wi�H(w)=η)]

8.1.8 FTRL Analysis

Lemma 2: The regret of FTRL satises RFT RL
T � [R(u)�R(w1)+

T
∑

t=1
( ft(wt)� ft(wt+1)]

Proof: Running FTRL on f1; f2; f3; ::: FTRL reduces to FTL if we add a zero’th iteration with
f0(w) = R(w)

using FTL regret bound result i.e. RT
t=0(FT L;u)�

T
∑

t=0
( ft(wt)� ft(wt+1))

T
∑

t=0
ft(wt)�

T
∑

t=0
ft(u)�

T
∑

t=1
( ft(wt)� ft(wt+1)

T
∑

t=0
ft(wt)�

T
∑

t=0
ft(u)� R(u)�R(w1)+

T
∑

t=1
( ft(wt)� ft(u)

Summary: We have seen the simple strategy (FTL) to choose the expert based on the history
and case where this strategy fails. Also we introduced regularization as an approach to avoid the
”overfitting” phenomenon. We will discuss more about FTRL and its regret bound in next class.
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