
E1 245: Online Prediction & Learning Fall 2014

Lecture 9 — September 2
Lecturer: Aditya Gopalan Scribe: Rahul R

9.1 Recap
In the last lecture, we introduced the framework of online convex optimization. A simple algorithm
for the convex setting called Follow-The-Leader (FTL) was introduced and its general regret bound
derived. It was illustrated that the performance of FTL is strongly dependent on the curvature of the
loss functions. To stabilize the FTL algorithm, we introduced a new algorithm called Regularized
FTL (FTRL). FTRL is shown to give different specialized algorithms and regret performance for
different choices of the regularizer function. For example, the Euclidean regularizer results in
Online Gradient Descent algorithm, whereas the Entropy regularizer function results in an EXP-
WTS algorithm.

In this lecture, we will obtain a general regret bound for FTRL. We will then introduce the
framework of constrained optimization and introduce the Projected OGD (POGD) algorithm. It
will be shown that POGD gives suboptimal regret scaling when applied to the expert selection
problem. We will then introduce the concept of strongly convex functions, which will be subse-
quently used to obtain better regret bounds.

9.2 Generic regret bound for FTRL
Theorem 9.1. For a regularization function, R : K → R, suppose FTRL predicts the sequence of
vectors w1,w2,w3, . . . such that ∀t, wt = argmin

w∈K
∑

t−1
s=1 fs(w)+R(w) then

∀u ∈ K, RFT RL
T (u)≤ R(u)−R(w1)+

T

∑
t=1

[ ft(wt)− ft(wt+1)]

Proof: Running FTRL on f1, f2, f3, . . . is equivalent to running FTL on f t = R, f1, f2, f3, . . ., then
by using the FTL regret lemma,
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RFT L
T (u)≤

T

∑
t=0

[ ft(wt)− ft(wt+1)]

∴
T

∑
t=0

[ ft(wt)− ft(u)]≤
T

∑
t=0

[ ft(wt)− ft(wt+1)]

R(w0)−R(u)+
T

∑
t=1

[ ft(wt)− ft(u)]≤ R(w0)−R(w1)+
T

∑
t=1

[ ft(wt)− ft(wt+1)]

=⇒
T

∑
t=1

[ ft(wt)− ft(u)]≤ R(u)−R(w1)+
T

∑
t=1

[ ft(wt)− ft(wt+1)]

�

9.3 Regret bounds for unconstrained Online Gradient Descent
(OGD)

Suppose we run FTRL on K =Rd , Rη(w)=
‖w‖2

2
2η

and linear loss function, ft(x) = 〈x,Zt〉. Note that,
this particular choice of the regularization function would result in the Online Gradient Descent
rule, wt+1 = wt−ηZt = wt−η5 ft(wt). We can now apply Thm(9.1) to obtain regret bounds for
OGD.

Theorem 9.2.

∀u ∈ Rd, ROGD
T (u)≤ ‖u‖

2
2

2η
+η

T

∑
t=1
‖Zt‖2

2

Proof: Using FTRL lemma (9.1),

ROGD
T (u)≤ R(u)−R(w1)+

T

∑
t=1

[ ft(wt)− ft(wt+1)]

≤ ‖u‖
2
2

2η
+

T

∑
t=1

< wt−wt+1,Zt >, [R(w1)> 0]

≤ ‖u‖
2
2

2η
+η

T

∑
t=1
‖Zt‖2

2

�
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9.4 Projected Online Gradient Descent(POGD)

9.4.1 Constrained optimization
Suppose the convex decision space, K ⊂ Rd , then the POGD method projects the solution of OGD,
yt back into the decision space K to obtain wt , here, η is the learning parameter. This ensures that
the decision vector is in the constrained set K and also since wt is closer to any member of K than
yt , it is also closer to the optimum decision w∗. Note that the loss function, ft : K→ R is assumed
to be convex and hence ∀t,∀u,wt ∈ K; ft(wt)− ft(u)≤ 〈5 ft(wt),wt−u〉.

Projected Online Gradient Descent Algorithm:

yt := wt−1−η5 ft−1(wt−1)

wt := Πkyt

:= argmin
w∈K
‖yt−w‖2

Theorem 9.3. Regret of POGD[4]

RPOGD(η)
T := max

u∈K
RPOGD(η)

T (u)

≤ D2

2η
+

η

2
T G2

where, D := max
x,y∈K
‖x− y‖2, G := sup

t≤T,x∈K
‖5 ft(x)‖.

Proof: Let w∗ = argmin
w∈K

∑
T
t=1 ft(w). Then

ft(wt)− ft(w∗)≤ 〈5 ft(wt),wt−w∗〉

=
1

2η
〈2ηgt ,wt−w∗〉

=
1

2η
2(wt− yt+1)

T (wt−w∗)

=
1

2η
[‖wt− yt+1‖2

2 +‖wt−w∗‖2
2−‖w

∗− yt+1‖2
2]

=
1

2η
[η2‖gt‖2

2 +‖wt−w∗‖2
2−‖w

∗− yt+1‖2
2]

Since, wt+1 := Πkyt+1, ‖yt+1−w∗‖ ≥ ‖wt+1−w∗‖,
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ft(wt)− ft(w∗)≤
1

2η
[η2‖gt‖2

2 +‖wt−w∗‖2
2−‖wt+1−w∗‖2

2]

∴ RPOGD(η)
T =

T

∑
t=1

[ ft(wt)− ft(w∗)]

≤ η

2

T

∑
t=1
‖gt‖2

2 +
‖w1−w∗‖2

2
2η

≤ η

2
T G2 +

D2

2η

�

Note, setting η = D
G
√

T
, gives, RPOGD

T ≤ DG
√

T .

Best expert problem

POGD can be applied to Best expert problem by setting K =4N and convex loss function, ft(π) =
〈π, lt〉, where lt ∈ [0,1]N . Then, D = max

x,y∈4N
‖x− y‖2 =

√
2 and G = max

x∈4N ,t≤T
‖5 ft(x)‖2 ≤ N. This

gives a regret bound of RPOGD
T ≤

√
2NT . However, the EXP-WTS algorithm (obtained by choosing

the entropy regularizer) is known to obtain a much better bound of O(
√

T log(N)). Hence, using
the euclidean regularizer, ‖.‖2 gives sub-optimal Regret.

9.5 Strongly Convex functions
A function is convex if it grows faster than a linear function everywhere. To be precise, for a
convex function f , at any point w, the tangent at w does not exceed the functon, f at any point. A
function f is strictly convex if, f is strictly above the tangent and the difference can be quantified
as follows:

Definition (Strong Convexity)

Let K be a convex set. Then a function f : K→ R is said to be strongly convex over K w.r.t a
norm ‖.‖ if, for any w,v ∈ K and α ∈ [0,1]

f (αv+(1−α)w)≤ α f (v)+(1−α) f (w)− σ

2
α(1−α)‖v−w‖2

Equivalent definitions of strong convexity are,

∀z ∈ ∂ f (w), f (v)≥ f (w)+ 〈z,v−w〉+ σ

2
‖v−w‖2
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If f is differentiable, then f is strongly convex iff,

〈5 f (v)−5 f (w),v−w〉 ≥ σ‖v−w‖2

Additionally, if f is twice differentiable then, a sufficient condition for strong convexity of f is

∀w,x ∈ K, 〈52 f (w)x,x〉 ≥ σ‖x‖2

Example: (Euclidean Regularization) The function R(w) = ‖w‖2
2

2 is 1-strongly convex w.r.t
to l2 norm over Rd , since the Hessian of R(w),52R(w) = I.

Example: (Entropy Regularization) The function R(w) = ∑
d
i=1 w(i) log [w(i)] is 1-strongly

convex w.r.t to l1 norm over the probability simplex, since 52R(w) = diag{ 1
w(1) ,

1
w(2) , . . . ,

1
w(d)}

and

〈52R(w)x,x〉=
d

∑
i=1

x(i)
w(i)

=
1
‖w‖1

(
d

∑
i=1

w(i))(
d

∑
i=1

x(i)
w(i)

)

Then, by Cauchy-Schwartz inequality

〈52R(w)x,x〉 ≥ 1
‖w‖1

(
d

∑
i=1

√
w(i)

|x(i)|√
w(i)

)2

=
1
‖w‖1

‖x‖2
1

In particular for the probability simplex, ‖w‖2
1 = 1, and the result follows.
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