
Learning in Complex Systems Spring 2011

Lecture Notes Nahum Shimkin

6 Basic Convergence Results for RL Algorithms

We establish here some asymptotic convergence results for the basic RL algorithms, by

showing that they reduce to Stochastic Approximation schemes. We focus on the discounted-

cost problem, which is easiest. Analogous results exist for shortest-path problems.

We do not directly consider here the issue of exploration, which is essential for convergence

to the optimal policy. Thus, where required we will simply assume that all actions are

sampled often enough.

6.1 Q-learning

Recall the Q-learning algorithm, in the following generalized form:

Qn+1(s, a) = Qn(s, a) + αn(s, a)[r(s, a, s′s,a) + γ max
a′

Qn(s′s,a, a
′)−Qn(s, a)]

where each s′s,a is determined randomly according to p(s′|s, a).

We allow here αn(s, a) = 0, so that any number of (s, a) pairs can be updated at each

stage.

This iteration can be viewed as an (asynchronous) Stochastic Approximation algorithm,

with Q ≡ θ. This leads to the following result.

1

Theorem 1 (Convergence of Q-learning).

Let γ < 1, and let Q∗ be the optimal γ-discounted Q function. Assume

∞∑

h=0

αn(s, a) = ∞,

∞∑
n=0

αn(s, a)2 < ∞ (w.p. 1) ∀s, a .

Then

lim
n→∞

Qn(s, a) = Q∗(s, a) (w.p. 1) ∀s, a .

Proof: Define the mapping H over the set of Q-functions as follows:

(HQ)(s, a) =
∑

s′
P (s′|s, a)[r(s, a, s′) + γ max

a′
Q(s′, a′)]

= E[r(s, a, sn+1) + γ max
a′

Q(sn+1, a
′)|sn = s, an = a] .

The above Q-learning algorithm can thus be written in the standard SA form, with the

noise vector ωn given by:

ωn(s, a) = r(s, a, s′s,a) + γ max
a′

Qn(s′s,a, a
′)− (HQ)(s, a) .

We proceed to verify the assumptions in Prop. 4.4 of B.&T. (Theorem 2 in the previous

chapter):

(a) Step-size requirements hold here by assumption.

(b) Noise Assumption N1: The definition of ωn immediately implies that E(ωn(s, a)|Fn) =

0. It is further easily seen that

E(ωn(s, a)2|Fn) ≤ quadratic function of ‖Q‖∞ .

(c) Contraction: As with the discounted DP operator, it may be verified that H is a

γ-contraction w.r.t. the max-norm.

The required convergence result therefore follows by the above-mentioned theorem.

2

Remarks on basic (on-policy) Q-learning:

• In the basic version of the algorithm, we follow a state-action sequence (sn, an; n =

0, 1, · · ·) which is generated by some arbitrary policy, and at time n update Q(s, a)

only for (s, a) = (sn, an). This corresponds to the choice of gains:

αn(s, a) > 0 iff (s, a) = (sn, an) .

• For (s, a) = (sn, an), a typical choice for αn is

αn(s, a) = α̂(Nn(s, a))

where Nn is the number of previous visits to (s, a), and α̂(k) satisfies the standard

assumptions.

• For the step-size requirements in the theorem to hold in this case it is required that

each (s, a) pair is visited “relatively often”. This should be verified by appropriate

exploration policies!

Undiscounted case: Under appropriate “Stochastic Shortest Path” assumptions, it can be

shown that H is a pseudo-contraction w.r.t. some weighted max-norm. Convergence follows

as above.

3

6.2 Convergence of TD(λ)

TD(0) can be analyzed exactly as Q-learning learning. TD(λ) is slightly more involved.

Recall the “on-line” version of TD(λ):

Vn+1(s) = Vn(s) + αnen(s)dn , s ∈ S

where
αn = gain

en(s) = eligibility trace coefficient

dn = rn + γVn(sn+1)− Vn(sn)

γ = discount factor

Requirements on the Eligibility Trace

Several variants of the algorithm are obtained by different choices of en(s), such as:

(a) First-visit TD(λ):

en(s) = (γλ)n−m1(s)1{n ≥ m1(s)} ,

m1(s) is the time of first visit to state s (during the present run).

(b) Every-visit TD(λ):

en(s) =
∑

j:mj(s)≤n

(γλ)n−mj(s) ,

mj(s) is the time of jth visit to state s.

(c) First-visit with stopping:

en(s) = (γλ)n−m1(s)1{m1(s) ≤ n ≤ τ}

where τ is some stopping time – e.g., end of simulation run, or arrival to a state

whose value V (s) is known with high precision. en(s) is restarted after τ .

4

A general set of requirements on the eligibility coefficients en(s), which includes the above

cases, is given as follows:

(a) e0(s) = 0, en(s) ≥ 0.

(b) en(s) ≤ γen−1(s) if sn 6= s,

1 ≤ en(s) ≤ 1 + γen−1(s) if sn = s.

(c) en(s) is measurable on the past.

Convergence

We now argue as follows.

• It may be seen that TD(λ) is in the form of the Stochastic Approximation algorithm,

with θn ≡ Vn, and

h(θ) ≡ h(V) = (h(V)(s), s ∈ S) ,

h(V)(x) = Eπ[dn|Vn = V, sn = s]

=
∑

a

π(a|s)[r(s, a) + γ
∑

s′
p(s′|s, a)V (y)]− V (s)

:= (HV)(s)− V (s) .

Here π is the fixed stationary policy that is used.

• For 0 < γ < 1 it is obvious that H is a contraction operator.

• For convergence we now need to verify that the effective gains αnen(s) satisfy the

“usual assumptions”. This may be verified by requiring that each state is visited

“relatively often”.

For γ = 1 a similar argument may be made for SSP (Stochastic Shortest Path) problems.

5

6.3 Actor-Critic Algorithms

Convergence of actor-critic type algorithms is harder to analyze and has been established

more recently. We describe here some results from Konda and Borkar (2000).

Recall that the idea is to use a “fast” estimation loop to obtain V̂ (s), and a slower loop to

update the policy π̂ given V̂ .

Let Vn(s) and πn = (πn(a|s)) be the estimated value and policy at step n.

Algorithm 1

a. Value-function estimation (generalized TD(0)):

Vn+1 = Vn(s) + βn(s)[r(s, an(s)) + γVn(sn+1(s))− Vn(s)] , s ∈ Yn

where

Yn – set of states updated at step n

βn(s) – gains

sn+1(s) – next state, chosen with distribution p(s′) =
∑

a p(s′|s, a)πn(a, s).

b. Policy update:

πn+1(a|s) = πn(a|s) + αn(s, a)((Q̂n(s, a)− Q̂n(s, a0))) , (s, a) ∈ Zn

where

Zn – set of state-action pairs updated at step n

αn(s, a) – gains

Q̂n(s, a) := r(s, a) + γVn(sn+1(s, a))

sn+1(s, a) – next state, chosen according to p(s′|s, a)

a0 – a fixed reference action (for each state).

b’. Policy normalization:

For each s, project the vector (πn+1(a|s), a 6= a0) unto the following set of sub-

probability vectors:

{π : π(a) ≥ 0,
∑

a 6=a0

π(a) ≤ 1}

and then let πn+1(a0|s) = 1−∑
a 6=a0

πn+1(a|s).

6

c. Rate requirements:

We first require that all updates are executed relatively often, namely that for some

∆ > 0,

lim inf
n→∞

n1(s)

n
≥ ∆ , lim inf

n→∞
n2(s, a)

n
≥ ∆ ,

where

n1(s) =
n∑

k=1

1{s ∈ Yk}

n2(s, a) =
n∑

k=1

1{(s, a) ∈ Zk} .

The gains are determined by some sequences α(m) and β(m), as

αn(s, a) = α(n2(s, a)) , βn(s) = β(n1(s)) .

The sequences α(m), β(m) should satisfy:

(1) The standard summabilty assumptions.

(2) Policy updates are “slower”: limm→∞
α(m)
β(m)

= 0.

(3) Some additional technical assumptions ...

All these requirements are satisfied, e.g., by α(m) = 1
m log m

, β(m) = 1
m

.

Under these assumptions, Algorithm 1 converges to the optimal value and policy.

7

Algorithm 2:

Same as Algorithm 1, except for the policy update (b):

πn+1(a|s) = πn(a|s) + an(s, a)[{Q̂n(s, a)− Vn(s)}πn(a|s) + ξn(s, a)] .

ξn(s, a) are sequences of “small” noise terms, these are needed to prevent the algorithm

from getting stuck in the wrong “corners”.

Algorithm 3:

Same as Algorithm 1, except for (b):

wn+1(a|s) = wn(a|s) + αn(s, a)[Q̂n(s, a)− Vn(s)]

and

πn(s, a) :=
exp(wn(s, a))∑
a′ exp(wn(s, a′))

.

In all these variants, convergence is proved using a “two-time scale” Stochastic Approxi-

mation framework, the analysis is based on the ODE method which couples a “fast” ODE

(for V) and a “slow” ODE (for π).

8

