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The Fenchel conjugate

Oυκ έστ ’ εραστ ὴσ óστισ oυκ αεὶ ϕιλει̂
(He is not a lover who does not love forever)

(Euripides, “The Trojan Women”)

In the study of a (constrained) minimum problem it often happens that an-
other problem, naturally related to the initial one, is useful to study. This is
the so-called duality theory, and will be the subject of the next chapter.

In this one, we introduce a fundamental operation on convex functions that
allows building up a general duality theory. Given an extended real valued
function f defined on a Banach space X, its Fenchel conjugate f∗ is a convex
and lower semicontinuous function, defined on the dual space X∗ of X. After
defining it, we give several examples and study its first relevant properties.
Then we observe that we can apply the Fenchel conjugation to f∗ too, and
this provides a new function, again defined on X, and minorizing everywhere
the original function f . It coincides with f itself if and only if f ∈ Γ (X), and is
often called the convex, lower semicontinuous relaxation (or regularization) of
f . Moreover, there are interesting connections between the subdifferentials of
f and f∗; we shall see that the graphs of the two subdifferentials are the same.
Given the importance of this operation, a relevant question is to evaluate the
conjugate of the sum of two convex functions. We then provide a general result
in this sense, known as the Attouch–Brézis theorem.

5.1 Generalities

As usual, we shall denote by X a Banach space, and by X∗ its topological
dual.

Definition 5.1.1 Let f : X → (−∞,∞] be an arbitrary function. The
Fenchel conjugate of f is the function f∗ : X∗ → [−∞,∞] defined as

f∗(x∗) := sup
x∈X

{〈x∗, x〉 − f(x)}.
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We have that

(x∗, α) ∈ epi f∗ ⇐⇒ f(x) ≥ 〈x∗, x〉 − α, ∀x ∈ X,

which means that the points of the epigraph of f∗ parameterize the affine
functions minorizing f . In other words, if the affine function l(x) = 〈x∗, x〉−α
minorizes f , then the affine function m(x) = 〈x∗, x〉 − f∗(x∗) fulfills

l(x) ≤ m(x) ≤ f(x).

We also have that

epi f∗ =
⋂

x∈X

epi{〈 · , x〉 − f(x)}.

Observe that even if f is completely arbitrary, its conjugate is a convex
function, since epi{〈 · , x〉 − f(x)} is clearly a convex set for every x ∈ X.
Furthermore, as epi{〈 · , x〉−f(x)} is for all x, a closed set in X∗×R endowed
with the product topology inherited by the weak∗ topology on X∗ and the
natural topology on R, it follows that for any arbitrary f, epi f∗ ⊂ X∗ × R is
a closed set in the above topology.

A geometrical way to visualize the definition of f∗ can be captured by
observing that

−f∗(x∗) = sup{α : α + 〈x∗, x〉 ≤ f(x), ∀x ∈ X}.

f

-f *(1)

Figure 5.1.

For,

f∗(x∗) = inf{−α : α + 〈x∗, x〉 ≤ f(x), ∀x ∈ X}
= − sup{α : α + 〈x∗, x〉 ≤ f(x), ∀x ∈ X}.
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Example 5.1.2 Here we see some examples of conjugates.
(a) The conjugate of an affine function: for a ∈ X∗, b ∈ R, letf(x) = 〈a, x〉+b;

then

f∗(x∗) =

{
−b if x∗ = a,

∞ otherwise.

(b) f(x) = ‖x‖, f∗(x∗) = IB∗(x∗).
(c) Let X be a Hilbert space and f(x) = 1

2‖x‖2, then f∗(x∗) = 1
2‖x∗‖2∗, as

one can see by looking for the maximizing point in the definition of the
conjugate.

(d) f(x) = IC(x), f∗(x∗) = supx∈C〈x∗, x〉 := σC(x∗); σC is a positively ho-
mogeneous function, called the support function of C. If C is the unit ball
of the space X, then f∗(x∗) = ‖x∗‖∗. If C is a cone, the support function
of C is the indicator function of the cone C◦, the polar cone of C, which
is defined as C◦ = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0, ∀x ∈ C}. Observe that C◦ is a
weak∗-closed convex cone.

C

Co

Figure 5.2. A cone C and its polar cone C◦.

Exercise 5.1.3 Find f∗, for each f listed: (a) f(x) = ex, (b) f(x) = x4,
(c) f(x) = sinx, (d) f(x) = max{0, x}, (e) f(x) = −x2, (f) f(x, y) = xy,

(g) f(x) =

{
ex if x ≥ 0,

∞ otherwise,
(h) f(x) =

{
x lnx if x ≥ 0,

∞ otherwise,

(i) f(x) =

{
1 if x ≥ 0,

−1 otherwise;
(j) f(x) = (x2 − 1)2,

(k) f(x) =

{
0 if |x| ≤ 1,

(x2 − 1)2 otherwise.

The next proposition summarizes some elementary properties of f∗; we
leave the easy proofs as an exercise.
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Proposition 5.1.4 We have:
(i) f∗(0) = − inf f ;
(ii) f ≤ g ⇒ f∗ ≥ g∗;
(iii) (infj∈J fj)∗ = supj∈J f∗

j ;
(iv) (supj∈J fj)∗ ≤ infj∈J f∗

j ;
(v) ∀r > 0, (rf)∗(x∗) = rf∗(x∗

r );
(vi) ∀r ∈ R, (f + r)∗(x∗) = f∗(x∗)− r;
(vii) ∀x̂ ∈ X, if g(x) := f(x− x̂), then g∗(x∗) = f∗(x∗) + 〈x∗, x̂〉.
Example 5.1.5 Let f(x) = x, g(x) = −x. Then (max{f, g})∗(x∗) = I[−1,1],
min{f∗, g∗}(x∗) = 0 if |x| = 1, ∞ elsewhere. Thus the inequality in the fourth
item above can be strict, which is almost obvious from the fact that in general
infj∈J f∗

j need not be convex.

Example 5.1.6 Let g : R → (−∞,∞] be an even function. Let f : X → R

be defined as f(x) = g(‖x‖). Then

f∗(x∗) = g∗(‖x∗‖∗).

For,

f∗(x∗) = sup
x∈X

{〈x∗, x〉 − g(‖x‖)} = sup
t≥0

sup
‖x‖=t

{〈x∗, x〉 − g(‖x‖)}

= sup
t≥0
{t‖x∗‖∗ − g(t)} = sup

t∈R

{t‖x∗‖∗ − g(t)} = g∗(‖x∗‖∗).

Exercise 5.1.7 Let X be a Banach space, f(x) = 1
p‖x‖p, with p > 1. Then

f∗(x∗) = 1
q‖x∗‖q

∗ ( 1
p + 1

q = 1).
The case p = 2 generalizes Example 5.1.2 (c).

Exercise 5.1.8 Let X be a Banach space, let A : X → X be a linear, bounded
and invertible operator. Finally, let f ∈ Γ (X) and g(x) = f(Ax). Evaluate g∗.

Hint. g∗(x∗) = f∗((A−1)∗)(x∗).

Exercise 5.1.9 Evaluate f∗ when f is

f(x) =

{
−√x if x ≥ 0,

∞ otherwise,
f(x, y) =

{
−2
√

xy if x ≥ 0, y ≥ 0,

∞ otherwise.

Exercise 5.1.10 Let X be a Banach space. Suppose lim‖x‖→∞
f(x)
‖x‖ = ∞.

Prove that dom f∗ = X∗ and that the supremum in the definition of the
conjugate of f is attained if X is reflexive.

Exercise 5.1.11 Let X be a Banach space and let f ∈ Γ (X). Then the
following are equivalent:
(i) lim‖x‖→∞ f(x) =∞;
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(ii) there are c1 > 0, c2 such that f(x) ≥ c1‖x‖ − c2;
(iii) 0 ∈ int dom f∗.
Find an analogous formulation for the function f(x)−〈x∗, x〉, where x∗ ∈ X∗.

Hint. Suppose f(0) = 0, and let r be such that f(x) ≥ 1 if ‖x‖ ≥ r. Then, for
x such that ‖x‖ > r, we have that f(x) ≥ ‖x‖

r . Moreover, there exists ĉ < 0
such that f(x) ≥ ĉ if ‖x‖ ≤ r. Then f(x) ≥ ‖x‖

r + ĉ− 1 for all x. This shows
that (i) implies (ii).

Exercise 5.1.12 Let f ∈ Γ (X). Then lim‖x∗‖∗→∞
f∗(x∗)
‖x∗‖∗

= ∞ if and only if
f is upper bounded on all the balls. In particular this happens in finite dimen-
sions, if and only if f is real valued. On the contrary, in infinite dimensions
there are continuous real valued convex functions which are not bounded on
the unit ball.

Hint. Observe that the condition lim‖x∗‖∗→∞
f∗(x∗)
‖x∗‖∗

= ∞ is equivalent to
having that for each k > 0, there is ck such that f∗(x∗) ≥ k‖x∗‖∗ − ck. On
the other hand, f is upper bounded on kB if and only if there exists ck such
that f(x) ≤ IkB(x) + ck.

5.2 The bijection between Γ (X) and Γ ∗(X∗)

Starting from a given arbitrary function f , we have built its conjugate f∗. Of
course, we can apply the same conjugate operation to f∗, too. In this way, we
shall have a new function f∗∗, defined on X∗∗. But we are not interested in
it. We shall instead focus our attention to its restriction to X, and we shall
denote it by f∗∗. Thus

f∗∗ : X → [−∞,∞]; f∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − f∗(x∗)}.

In this section, we study the connections between f and f∗∗.

Proposition 5.2.1 We have f∗∗ ≤ f .

Proof. ∀x ∈ X, ∀x∗ ∈ X∗,

〈x∗, x〉 − f∗(x∗) ≤ f(x).

Taking the supremum over x∗ ∈ X∗ in both sides provides the result. ��
Definition 5.2.2 We define the convex, lower semicontinuous regularization
of f : X → (−∞,∞] to be the function f̂ such that

epi f̂ = cl co epi f.
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The definition is consistent because the convex hull of an epigraph is still
an epigraph. Clearly, f̂ is the largest convex (the closure of a convex set is
convex) and lower semicontinuous function minorizing f : if g ≤ f and g is
convex and lower semicontinuous, then g ≤ f̂ . For, epi g is a closed convex set
containing epi f , hence it contains cl co epi f .

Remark 5.2.3 If f is convex, then f̂ = f̄ . If f ∈ Γ (X), then f = f̂ . This
easily follows from

epi f = cl co epi f.

Observe that we always have f̂ ≥ f∗∗, as f∗∗ ≤ f and f∗∗ is convex and
lower semicontinuous.

The next theorem provides a condition to ensure that f̂ and f∗∗ coincide.
Exercise 5.2.5 shows that such a condition is not redundant.

Theorem 5.2.4 Let f : X → (−∞,∞] be such that there are x∗ ∈ X∗, α ∈ R

with f(x) ≥ 〈x∗, x〉+ α, ∀x ∈ X. Then f̂ = f∗∗.

Proof. The claim is obviously true if f is not proper, as in such a case, both
f∗∗ and f̂ are constantly ∞. Then we have that ∀x ∈ X,

f̂(x) ≥ f∗∗(x) ≥ 〈x∗, x〉+ α.

The last inequality follows from the fact that f ≥ g =⇒ f∗∗ ≥ g∗∗ and that
the biconjugate of an affine function coincides with the affine function itself.
Thus f∗∗(x) > −∞ for all x. Let us suppose now, for the sake of contradiction,
that there is x0 ∈ X such that f∗∗(x0) < f̂(x0). It is then possible to separate
(x0, f

∗∗(x0)) and epi f̂ . If f̂(x0) < ∞, we then get the existence of y∗ ∈ X∗

such that

〈y∗, x0〉+ f∗∗(x0) < 〈y∗, x〉+ f̂(x) ≤ 〈y∗, x〉+ f(x), ∀x ∈ X.

(To be sure of this, take a look at the proof of Theorem 2.2.21). This implies

f∗∗(x0) < 〈−y∗, x0〉 − sup
x∈X

{〈−y∗, x〉 − f(x)} = 〈−y∗, x0〉 − f∗(−y∗),

which is impossible. We then have to understand what is going on when
f̂(x0) = ∞. In the case that the separating hyperplane is not vertical, one
concludes as before. In the other case, we have the existence of y∗ ∈ X∗, c ∈ R

such that
(i) 〈y∗, x〉 − c < 0 ∀x ∈ dom f ;
(ii) 〈y∗, x0〉 − c > 0.
Then

f(x) ≥ 〈x∗, x〉+ α + t(〈y∗, x〉 − c), ∀x ∈ X, t > 0,

and this in turn implies, by conjugating twice, that

f∗∗(x) ≥ 〈x∗, x〉+ α + t(〈y∗, x〉 − c), ∀x ∈ X, t > 0.
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But then
f∗∗(x0) ≥ 〈x∗, x0〉+ α + t(〈y∗, x0〉 − c), ∀t > 0,

which implies f∗∗(x0) =∞. ��
Exercise 5.2.5 Let

f(x) =

{
−x2 if x ≤ 0,

∞ otherwise.

Find f∗∗ and f̂ .

Proposition 5.2.6 Let f : X → [−∞,∞] be a convex function and suppose
f(x0) ∈ R. Then f is lower semicontinuous at x0 if and only if f(x0) =
f∗∗(x0).

Proof. We always have f∗∗(x0) ≤ f(x0) (Proposition 5.2.1). Now, suppose f
is lower semicontinuous at x0. Let us see first that f̄ cannot assume value
−∞ at any point. On the contrary, suppose there is z such that f̄(z) = −∞.
Then f̄ is never real valued, and so f̄(x0) = −∞, against the fact that f is
lower semicontinuous and real valued at x0. It follows that f̄ has an affine
minorizing function; thus

f̄ = ˆ̄f = (f̄)∗∗ ≤ f∗∗.

As f̄(x0) = f(x0), we finally have f(x0) = f∗∗(x0). Suppose now f(x0) =
f∗∗(x0). Then

lim inf f(x) ≥ lim inf f∗∗(x) ≥ f∗∗(x0) = f(x0),

and this shows that f is lower semicontinuous at x0. ��
The function

f(x) =

{
−∞ if x = 0,
∞ otherwise,

shows that the assumption f(x0) ∈ R is not redundant in the above proposi-
tion. A more sophisticated example is the following one. Consider an infinite
dimensional Banach space X, take x∗ ∈ X∗ and a linear discontinuous func-
tional l on X. Define

f(x) =

{
l(x) if 〈x∗, x〉 ≥ 1,

∞ otherwise.

Then f is continuous at zero, and it can be shown that f∗∗(x) = −∞ for all
x. Observe that f is lower semicontinuous at no point of its effective domain.
This is the case because it can be shown that if there is at least a point of the
effective domain of f where f is lower semicontinuous, then f(x) = f∗∗(x)
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for all x such that f is lower semicontinuous (not necessarily real valued) at
x ([Si2, Theorem 3.4]).

The next proposition shows that iterated application of the conjugation
operation does not provide new functions.

Proposition 5.2.7 Let f : X → (−∞,∞]. Then f∗ = f∗∗∗.

Proof. As f∗∗ ≤ f , one has f∗ ≤ f∗∗∗. On the other hand, by definition
of f∗∗∗, we have f∗∗∗(x∗) = supx{〈x∗, x〉 − f∗∗(x)}, while, for all x ∈ X,
f∗(x∗) ≥ 〈x∗, x〉 − f∗∗(x), and this allows to conclude. ��

Denote by Γ ∗(X∗) the functions of Γ (X∗) which are conjugate of some
function of Γ (X). Then, from the previous results we get:

Theorem 5.2.8 The operator ∗ is a bijection between Γ (X) and Γ ∗(X∗).

Proof. If f ∈ Γ (X), f∗ cannot be −∞ at any point. Moreover, f∗ cannot be
identically ∞ as there is an affine function l( ·) of the form l(x) = 〈x∗, x〉 − r
minorizing f (Corollary 2.2.17), whence f∗(x∗) ≤ r. These facts imply that ∗

actually acts between Γ (X) and Γ ∗(X∗). To conclude, it is enough to observe
that if f ∈ Γ (X), then f = f∗∗ (Proposition 5.2.4). ��
Remark 5.2.9 If X is not reflexive, then Γ ∗(X∗) is a proper subset of Γ (X∗).
It is enough to consider a linear functional on X∗ which is the image of no
element of X via the canonical embedding of X into X∗∗; it belongs to Γ (X∗),
but it is not the conjugate of any function f ∈ Γ (X).

5.3 The subdifferentials of f and f∗

Let us see, by a simple calculus in a special setting, how it is possible to
evaluate the conjugate f∗ of a function f , and the connection between the
derivative of f and that of f∗. Let f : R

n → (−∞,∞] be a convex function.
Since f∗(x∗) = supx∈X{〈x∗, x〉 − f(x)}, we start by supposing that f is su-
perlinear (lim‖x‖→∞

f(x)
‖x‖ = ∞) and thus we have that the supremum in the

definition of the conjugate is attained, for every x∗. To find a maximum point,
like every student we assume that the derivative of f is zero at the maximum
point, called x̄. We get x∗ − ∇f(x̄) = 0. We suppose also that ∇f has an
inverse. Then x̄ = (∇f)−1(x∗). By substitution we get

f∗(x∗) = 〈x∗, (∇f)−1(x∗)〉 − f((∇f)−1(x∗)).

We try now to determine ∇f∗(x∗). We get

∇f∗(x∗) = (∇f)−1(x∗) + 〈J(∇f)−1(x∗), x∗〉 − 〈J(∇f)−1(x∗),∇f(∇f)−1)(x∗)〉
= (∇f)−1(x∗),
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where J(∇f)−1 denotes the jacobian matrix of the function (∇f)−1. Then we
have the interesting fact that the derivative of f is the inverse of the derivative
of f∗. This fact can be fully generalized to subdifferentials, as we shall see in
a moment.

Proposition 5.3.1 Let f : X → (−∞,∞]. Then x∗ ∈ ∂f(x) if and only if
f(x) + f∗(x∗) = 〈x∗, x〉.
Proof. We already know that

f(x) + f∗(x∗) ≥ 〈x∗, x〉, ∀x ∈ X, x∗ ∈ X∗.

If x∗ ∈ ∂f(x), then

f(y)− 〈x∗, y〉 ≥ f(x)− 〈x∗, x〉, ∀y ∈ X,

whence, ∀y ∈ X,

〈x∗, y〉 − f(y) + f(x) ≤ 〈x∗, x〉.
Taking the supremum over all y in the left side provides one implication. As
to the other one, if f(x)+ f∗(x∗) = 〈x∗, x〉, then from the definition of f∗, we
have that

f(x) + 〈x∗, y〉 − f(y) ≤ 〈x∗, x〉, ∀y ∈ X,

which shows that x∗ ∈ ∂f(x). ��
Proposition 5.3.1 has some interesting consequences. At first,

Proposition 5.3.2 Let f : X → (−∞,∞]. If ∂f(x) �= ∅, then f(x) = f∗∗(x).
If f(x) = f∗∗(x), then ∂f(x) = ∂f∗∗(x).

Proof. ∀x ∈ X, ∀x∗ ∈ X∗, we have

f∗(x∗) + f∗∗(x) ≥ 〈x, x∗〉.
If x∗ ∈ ∂f(x), by Proposition 5.3.1 we get

f∗(x∗) + f(x) = 〈x∗, x〉.
It follows that f∗∗(x) ≥ f(x), and this shows the first part of the claim.
Suppose now f(x) = f∗∗(x). Then, using the equality f∗ = (f∗∗)∗,

x∗ ∈ ∂f(x) ⇐⇒ 〈x∗, x〉 = f(x) + f∗(x∗) = f∗∗(x) + f∗∗∗(x∗)
⇐⇒ x∗ ∈ ∂f∗∗(x).

��
Another interesting consequence is the announced connection between the

subdifferentials of f and f∗.
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Corollary 5.3.3 Let f : X → (−∞,∞]. Then

x∗ ∈ ∂f(x) =⇒ x ∈ ∂f∗(x∗).

If f(x) = f∗∗(x), then

x∗ ∈ ∂f(x) if and only if x ∈ ∂f∗(x∗).

Proof. x∗ ∈ ∂f(x) ⇐⇒ 〈x∗, x〉 = f(x) + f∗(x∗). Thus x∗ ∈ ∂f(x) implies
f∗∗(x) + f∗(x∗) ≤ 〈x∗, x〉, and this is equivalent to saying that x ∈ ∂f∗(x∗).
If f(x) = f∗∗(x),

x∗ ∈ ∂f(x) ⇐⇒ 〈x∗, x〉 = f(x) + f∗(x∗) = f∗∗(x) + f∗(x∗)
⇐⇒ x ∈ ∂f∗(x∗).

��
Thus, for a function f ∈ Γ (X), it holds that x∗ ∈ ∂f(x) if and only if

x ∈ ∂f∗(x∗).
The above conclusion suggests how to draw the graph of the conjugate of

a given function f : R → R. We can construct the graph of its subdifferential,
we “invert” it and we “integrate”, remembering that, for instance, f∗(0) =
− inf f . See Figures 5.3–5.5 below.
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Figure 5.3. From the function to its conjugate through the subdifferentials.

A similar relation holds for approximate subdifferentials. For the following
generalization of Proposition 5.3.1 holds:

Proposition 5.3.4 Let f ∈ Γ (X). Then x∗ ∈ ∂εf(x) if and only if f∗(x∗) +
f(x) ≤ 〈x∗, x〉+ ε. Hence, x∗ ∈ ∂εf(x) if and only if x ∈ ∂εf

∗(x∗).
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Figure 5.4. Another example.
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Figure 5.5. . . . and yet another one.

Proof. x∗ ∈ ∂εf(x) if and only if

f(x) + 〈x∗, y〉 − f(y) ≤ 〈x∗, x〉+ ε, ∀y ∈ X,

if and only if f(x) + f∗(x∗) ≤ 〈x∗, x〉 + ε. The second claim follows from
f = f∗∗. ��

The previous proposition allows us to show that only in exceptional cases
can the approximate subdifferential be a singleton (a nonempty, small set
indeed).

Proposition 5.3.5 Let f ∈ Γ (X) and suppose there are x ∈ dom f , x∗ ∈ X∗

and ε̄ > 0 such that ∂ε̄f(x) = {x∗}. Then f is an affine function.

Proof. As a first step one verifies that ∂εf(x) = {x∗} for all ε > 0. This is
obvious if ε < ε̄, because ∂εf(x) �= ∅, and due to monotonicity. Furthermore,
the convexity property described in Theorem 3.7.2 implies that ∂εf(x) is a
singleton also for ε > ε̄. For, take σ < ε̄ and suppose ∂εf(x) � y∗ �= x∗, for
some ε > ε̄. An easy but tedious calculation shows that being ∂σf(x) � x∗,
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∂ε̄f(x) � ε−ε̄
ε−σ x∗ + ε̄−σ

ε−σy∗ �= x∗, a contradiction. It follows, by Proposition
5.3.4, that if y∗ �= x∗,

f∗(y∗) > 〈y∗, x〉 − f(x) + ε, ∀ε > 0,

and this implies dom f∗ = {x∗}. We conclude that f must be an affine func-
tion. ��

5.4 The conjugate of the sum

Proposition 5.4.1 Let f, g ∈ Γ (X). Then

(f∇g)∗ = f∗ + g∗.

Proof.

(f∇g)∗(x∗) = sup
x∈X

{〈x∗, x〉 − inf
x1+x2=x

{f(x1) + g(x2)}
}

= sup
x1∈X
x2∈X

{〈x∗, x1〉+ 〈x∗, x2〉 − f(x1)− g(x2)} = f∗(x∗) + g∗(x∗).

��
Proposition 5.4.1 offers a good idea for evaluating (f + g)∗. By applying

the above formula to f∗, g∗ and conjugating, we get that

(f∗∇g∗)∗∗ = (f∗∗ + g∗∗)∗ = (f + g)∗.

So that if f∗∇g∗ ∈ Γ (X∗), then

(f + g)∗ = f∗∇g∗.

Unfortunately we know that the inf-convolution operation between functions
in Γ (X) does not always produce a function belonging to Γ (X); besides the
case when at some point it is valued−∞, it is not always lower semicontinuous.
The next important theorem, due to Attouch–Brézis (see [AB]), provides a
sufficient condition to get the result.

Theorem 5.4.2 Let X be a Banach space and X∗ its dual space. Let f, g ∈
Γ (X). Moreover, let

F := R
+(dom f − dom g)

be a closed vector subspace of X. Then

(f + g)∗ = f∗∇g∗,

and the inf-convolution is exact.
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Proof. From the previous remark, it is enough to show that the inf-convolution
is lower semicontinuous; in proving this we shall also see that it is exact
(whence, in particular, it never assumes the value −∞). We start by proving
the claim in the particular case when F = X. From Exercise 2.2.4 it is enough
to show that the level sets (f∗∇g∗)a are weak∗ closed for all a ∈ R. On the
other hand,

(f∗∇g∗)a =
⋂
ε>0

Cε := {y∗ + z∗ : f∗(y∗) + g∗(z∗) ≤ a + ε}.

It is then enough to show that the sets Cε are weak∗ closed. Fixing r > 0, let
us consider

Kεr := {(y∗, z∗) : f∗(y∗) + g∗(z∗) ≤ a + ε and ‖y∗ + z∗‖∗ ≤ r}.

Then Kεr is a closed set in the weak∗ topology. Setting T (y∗, z∗) = y∗ + z∗,
we have that

Cε ∩ rBX∗ = T (Kεr).

Since T is continuous from X∗×X∗ to X∗ (with the weak∗ topologies), if we
show that Kεr is bounded (hence weak∗ compact), then Cε ∩ rB∗ is a weak∗

compact set, for all r > 0. The Banach–Dieudonné–Krein–Smulian theorem
then guarantees that Cε is weak∗ closed (See Theorem A.2.1 in Appendix
B). Let us then show that Kεr is bounded. To do this, we use the uniform
boundedness theorem. Thus, it is enough to show that ∀y, z ∈ X, there is a
constant C = C(y, z) such that

|〈(y∗, z∗), (y, z)〉| = |〈y∗, y〉+ 〈z∗, z〉| ≤ C,∀(y∗, z∗) ∈ Kεr.

By assumption there is t ≥ 0 such that y − z = t(u− v) with u ∈ dom f and
v ∈ dom g. Then

|〈y∗, y〉+ 〈z∗, z〉| = |t〈y∗, u〉+ t〈z∗, v〉+ 〈y∗ + z∗, z − tv〉|
≤ |t(f(u) + f∗(y∗) + g(v) + g∗(z∗))|+ r‖z − tv‖
≤ |t(a + ε + f(u) + g(v))|+ r‖z − tv‖ = C(y, z).

The claim is proved in the case when F = X. Let us now turn to the general
case. Suppose u ∈ dom f − dom g. Then −u ∈ F and so there are t ≥ 0 and
v ∈ dom f − dom g such that −u = tv. It follows that

0 =
1

1 + t
u +

t

1 + t
v ∈ dom f − dom g.

Hence dom f ∩ dom g �= ∅ and after a suitable translation, we can suppose
that 0 ∈ dom f ∩dom g, whence dom f ⊂ F , dom g ⊂ F . Let i : F → X be the
canonical injection of F in X and let i∗ : X∗ → F ∗ be its adjoint operator:
〈i∗(x∗), d〉 = 〈x∗, i(d)〉. Let us consider the functions
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f̃ : F → (−∞,∞], f̃ := f ◦ i, g̃ : F → (−∞,∞], g̃ := g ◦ i.

We can apply the first step of the proof to them. We have

(f̃ + g̃)∗(z∗) = (f̃∗∇g̃∗)(z∗),

for all z∗ ∈ F ∗. It is now easy to verify that if x∗ ∈ X∗,

f∗(x∗) = f̃∗(i∗(x∗)), g∗(x∗) = g̃∗(i∗(x∗)),

(f + g)∗(x∗) = (f̃ + g̃)∗(i∗(x∗)), (f∗∇g∗)(x∗) = (f̃∗∇g̃∗)(i∗(x∗)),

(in the last one we use that i∗ is onto).
For instance, we have

f̃∗(i∗(x∗)) = sup
z∈F

{〈i∗(x∗), z〉 − f̃(z)} = sup
z∈F

{〈x∗, i(z)〉 − f(i(z))}

= sup
x∈X

{〈x∗, x〉 − f(x)},

where the last inequality holds as dom f ⊂ F . The others follow in the same
way. Finally, the exactness at a point x∗ ∈ dom f∗∇g∗ follows from the com-
pactness, previously shown, of Kε,‖x∗‖∗ , with a = (f∗∇g∗)(x∗) and ε > 0
arbitrary. This allows us to conclude. ��

Besides its intrinsic interest, the previous theorem yields the following sum
rule for the subdifferentials which generalizes Theorem 3.4.2.

Theorem 5.4.3 Let f, g ∈ Γ (X). Moreover, let

F := R+(dom f − dom g)

be a closed vector space. Then

∂(f + g) = ∂f + ∂g.

Proof. Let x∗ ∈ ∂(f + g)(x). We must find y∗ ∈ ∂f(x) and z∗ ∈ ∂g(x) such
that y∗+z∗ = x∗. By the previous result there are y∗, z∗ such that y∗+z∗ = x∗

and fulfilling f∗(y∗) + g∗(z∗) = (f + g)∗(x∗). As x∗ ∈ ∂(f + g)(x) we have
(Proposition 5.3.1)

〈y∗, x〉+ 〈z∗, x〉 = 〈x∗, x〉 = (f + g)(x) + (f + g)∗(x∗)
= f(x) + f∗(y∗) + g(x) + g∗(z∗).

This implies (why?)

〈y∗, x〉 = f(x) + f∗(y∗) and 〈z∗, x〉 = g(x) + g∗(z∗),

and we conclude. ��



5.5 Sandwiching an affine function between a convex and a concave function 93

The previous generalization is useful, for instance, in the following situa-
tion: suppose we have a Banach space Y , a (proper) closed subspace X and two
continuous functions f, g ∈ Γ (X) fulfilling the condition int dom f∩dom g �= ∅.
It can be useful sometimes to consider the natural extensions f̃ , g̃ ∈ Γ (Y ) of
f and g (by defining them ∞ outside X). In such a case the previous theorem
can be applied, while Theorem 3.4.2 obviously cannot.

Exercise 5.4.4 Let

f(x, y) =

{
−√xy if x ≤ 0, y ≤ 0,

∞ otherwise,

g(x, y) =

{
−√−xy if x ≥ 0, y ≤ 0,

∞ otherwise.

Find (f + g)∗ and f∗∇g∗.

Exercise 5.4.5 Given a nonempty closed convex set K,

d∗( · , K) = σK + IB∗ .

Hint. Remember that d( · , K) = (‖ ‖∇IK)( ·) and apply Proposition 5.4.1.

Exercise 5.4.6 Let X be a reflexive Banach space. Let f, g ∈ Γ (X). Let

lim
‖x‖→∞

f(x)
‖x‖ = ∞.

Then (f∇g) ∈ Γ (X).

Hint. Try to apply the Attouch–Brézis theorem to f∗, g∗.

5.5 Sandwiching an affine function between a convex and
a concave function

In this section we deal with the following problem: suppose we are given a
Banach space X and two convex, lower semicontinuous extended real valued
functions f and g such that f(x) ≥ −g(x) ∀x ∈ X. The question is: when is
it possible to find an affine function m with the property that

f(x) ≥ m(x) ≥ −g(x),

for all x ∈ X? It is clear that the problem can be restated in an equivalent,
more geometric, way: suppose we can separate the sets epi f and hyp(−g)
with a nonvertical hyperplane. With a standard argument this provides the
affine function we are looking for. And, clearly, the condition f ≥ −g gives
some hope to be able to make such a separation.

In order to study the problem, let us first observe the following simple
fact.



94 5 The Fenchel conjugate

Proposition 5.5.1 Let y∗ ∈ X∗. Then y∗ ∈ {p : f∗(p) + g∗(−p) ≤ 0} if and
only if there exists a ∈ R such that

f(x) ≥ 〈y∗, x〉+ a ≥ −g(x),

for all x ∈ X.

Proof. Suppose f∗(y∗) + g∗(−y∗) ≤ 0. Then, for all x ∈ X,

〈y∗, x〉 − f(x) + g∗(−y∗) ≤ 0,

i.e.,
f(x) ≥ 〈y∗, x〉+ a,

with a = g∗(−y∗). Moreover

a = g∗(−y∗) ≥ 〈−y∗, x〉 − g(x),

for all x ∈ X, implying 〈y∗, x〉 + a ≥ −g(x), for all x ∈ X. Conversely, if
f(x) ≥ 〈y∗, x〉+ a and 〈y∗, x〉+ a ≥ −g(x) for all x, then

−a ≥ f∗(y∗), a ≥ 〈−y∗, x〉 − g(x),

for all x, implying f∗(y∗) + g∗(−y∗) ≤ 0. ��

f

- g

-1 2

f(x) = 1
2
x2, g(x) =

{
x + 3 if x ≥ 0,

∞ otherwise.
f∗( ·) + g∗(− ·).

Figure 5.6.

It follows in particular that the set of the “slopes” of the affine functions
sandwiched between f and −g is a weak∗ closed and convex set, as it is
the zero level set of the function h( ·) = f∗( ·) + g∗(− ·). Now, observe that
infx(f + g)(x) ≥ 0 if and only if (f + g)∗(0∗) ≤ 0. Thus, if
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(f + g)∗(0∗) = (f∗∇g∗)(0∗)

and the epi-sum is exact, then infx(f + g)(x) ≥ 0 is equivalent to saying that
there exists y∗ ∈ X∗ such that

(f∗∇g∗)(0∗) = f∗(y∗) + g∗(−y∗) ≤ 0.

Thus a sufficient condition to have an affine function sandwiched between f
and −g is that the assumption of the Attouch–Brezis theorem be satisfied.

Now we specialize to the case when X is a Euclidean space. In this case
the condition f ≥ −g implies that

ri epi f ∩ ri hyp(−g) = ∅.
Then we can apply Theorem A.1.13 to separate the sets epi f and hyp(−g).
However, this does not solve the problem, as it can happen that the separating
hyperplane is vertical. So, let us now see a sufficient condition in order to
assure that the separating hyperplane is not vertical, which amounts to saying
that the affine function we are looking for is finally singled out.

Proposition 5.5.2 Suppose

ri dom f ∩ ri dom(−g) �= ∅.
Then there exists y∗ such that f∗(y∗) + g∗(−y∗) ≤ 0.

Proof. Let us use the Attouch–Brezis theorem, as suggested at the beginning
of the section. Thus, we must show that

F := R+(dom f − dom g)

is a subspace. As is suggested in the next exercise, it is enough to show that
if x ∈ F , then −x ∈ F . We can suppose, without loss of generality, that
0 ∈ ri dom f ∩ ri dom g. As x ∈ F , there are l > 0, u ∈ dom f and v ∈ dom g
such that x = l(u− v). As 0 ∈ ri dom f ∩ ri dom g, there is c > 0 small enough
such that −cu ∈ dom f , −cv ∈ dom g. Thus −cu − (−cv) ∈ dom f − dom g.
Then

l

c
(−cu− (−cv)) = −x ∈ F.

��
Exercise 5.5.3 Let A be a convex set containing zero. Then

⋃
λ>0 λA is a

convex cone. Moreover, if x ∈ ⋃λ>0 λA implies −x ∈ ⋃λ>0 λA, then
⋃

λ>0 λA
is a subspace.

Hint. Call F =
⋃

λ>0 λA. It has to be shown that x, y ∈ F implies x + y ∈ F .
There are positive l1, l2 and u, v ∈ A such that x = l1u, y = l2v. Then
x/l1 ∈ A, y/l2 ∈ A and 1

l1+l2
(x+ y) is a convex combination of x/l1 and y/l2.

We now give some pretty examples showing that the affine function sep-
arating epi f and hyp(−g) need not exist, unless some extra condition is im-
posed.
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Example 5.5.4

f(x) =

{
−√x if x ≥ 0,

∞ otherwise,

g(x) =

{
0 if x = 0,

∞ otherwise.

Here inf(f + g) = 0, and ri(dom f) ∩ ri(dom g) = ∅.
Example 5.5.5

f(u, v) =

{
−1 if uv ≥ 1, u ≥ 0,

∞ otherwise,

g(u, v) =

{
0 if u ≥ 0, v = 0,

∞ otherwise.

Here we have dom f ∩ dom g = ∅.
Example 5.5.6

f(u, v) =

{
u if v = −1,

∞ otherwise,

g(u, v) =

{
0 if v = 0,
∞ otherwise.

The Example 5.5.4 can induce the idea that the separator must be vertical
as the two effective domains do intersect at a point. So, it could be argued
that, if the two domain are far apart, the property could hold. But in Example
5.5.6 the distance between dom f and dom g is 1.

In the last two examples the domains of f and g do not intersect, while in
the first example a crucial role is played by the fact that inf(f + g) = 0. In
the following example inf(f +g) > 0, and yet there is no affine separator. Ob-
serve that such example could not be provided in one dimension (see Remark
2.2.15).

Example 5.5.7

f(u, v) =

{
1− 2

√
uv if u, v ≥ 0,

∞ otherwise,

g(u, v) =

{
1− 2

√−uv if u ≤ 0, v ≥ 0,

∞ otherwise.

A straightforward calculation shows
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f∗(u∗, v∗) =

{
−1 if u∗ ≤ 0, u∗v∗ ≥ 1,

∞ otherwise,

g∗(u∗, v∗) =

{
−1 if u∗ ≥ 0, u∗v∗ ≤ −1,

∞ otherwise.

Our finite dimensional argument actually holds, without any changes in
the proof, provided we assume that at least one of the sets epi f , hyp(−g) has
an interior point. In particular, the assumption in Proposition 5.5.2 becomes,
in infinite dimensions, int dom f ∩ dom g �= ∅. To conclude, let me mention
that this section is inspired by my work with Lewis [LeL], where we studied
the more general problem of giving sufficient conditions under which the slope
of the affine function between f and −g is in the range (or in the closure of
the range) of the Clarke subdifferential of a locally Lipschitz function h such
that f ≥ h ≥ −g.




