
E1 245 - Online Prediction and Learning, Aug-Dec 2014
Final Exam
December 9, 2014

Instructions:

• There are a total of 5 questions with a maximum score of 50 points. The total time allotted is 3
hours.

• No electronic devices or aids are allowed. You may use notes made on one A4 size sheet of paper
for reference.

1. (6 points) Suppose I give you a finite-state, finite-action Markov Decision Process (S,A, T,R) where
S andA are the set of states and actions respectively, T : S×A×S → R+ is the transition probability
function andR : S×A×S → R denotes the reward function. I present you with a policy π : S → A
for this MDP, claiming that π is optimal under the infinite-horizon discounted reward criterion with
a discount factor γ ∈ (0, 1).

How will you check if my claim is true or false (i.e., give an algorithm that decides if π is optimal or
not)?

2. (6 points) Consider the problem of sequentially predicting a (fixed and unknown) sequence y1, y2, . . .
in Rd. At each round t = 1, 2, . . . , T , the prediction algorithm picks a point pt ∈ Rd (knowing only
y1, . . . , yt−1), the current element yt of the sequence is revealed, and the algorithm suffers a loss
l(pt, yt) = ||pt − yt||22.

If the sequence {yn} comes from the unit ball B := {x ∈ Rd : ||x||2 ≤ 1} and we use the Follow-
The-Leader (FTL) algorithm1 to predict from B, then we have seen that the regret with respect to
points in B is O(log T ) over T rounds. Show that this upper bound is order-wise tight, i.e., for
any T ≥ 1, construct a sequence y1, y2, . . . , yT from B such that FTL suffers regret Ω(log T ) with
respect to B.

[Hint: Think about ±v for any unit vector v.]

3. (8 points) Consider an online convex optimization problem over Rd with convex, differentiable losses
lt : Rd → R, t = 1, 2, . . . and a strictly convex, differentiable regularizer R : Rd → R. Consider the
Follow-The-Regularized-Leader (FTRL) algorithm: Choose w1 ∈ Rd such2 that ∇R(w1) = 0. For
t ≥ 1, pick wt+1 := arg minw∈Rd

[∑t
s=1 ηls(w) +R(w)

]
.

Define Φ0(w) := R(w) and Φt(w) := Φt−1(w) + ηlt, w ∈ Rd, t ≥ 1. Prove the equivalence

wt+1 = arg min
w∈Rd

[
ηlt(w) +DΦt−1(w,wt)

]
, t ≥ 1, (1)

where DF stands for the Bregman divergence3 corresponding to F : R→ R. In other words, FTRL
searches for a point that “balances” between minimizing the loss on the most recently observed loss
function and staying close (in terms of Bregman “distance”) to the previous decision. [Hint: The
minimizer of the right hand side in (1) must make its gradient vanish. You may use the fact that a
strictly convex, differentiable function F is minimized at x if and only if∇F (x) = 0.]

4. (10 points) Inventory Control. The manager of a warehouse for a product factory faces the follow-
ing (idealized) problem. The warehouse has infinite capacity in terms of units of products. At the
beginning of each month, the warehouse is restocked with an additional (integer) number of units as
desired by the manager. The additional number of units added can at most be M . The total market
demand D for the entire month (again in integer units) is random with a (fixed) probability distribu-
tion given by pj := P[D = j], j = 0, 1, 2, . . . At the end of the month, up to D units are sold from

1Assume that the initial prediction is p1 := 0.
2Assume that this is indeed possible.
3DF (x, y) := F (x)− F (y)− 〈∇F (y), x− y〉.
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the warehouse subject to the restriction that the warehouse cannot sell more units than what it holds.
Thus, the inventory level (no. of units in the warehouse) for the next month Y , the inventory level
for the current month X , the no. of restocked units in the current month W and the demand D in
the current month are related by the equation Y = max(0, X + W − D). The cost of ordering u
fresh units of the product per month into the warehouse is a function c(u), u = 0, 1, 2, . . . The cost of
storing u units in the warehouse at the beginning of each month is h(u), u = 0, 1, 2, . . . The revenue
obtained when u units are sold at the end of a month is captured by the function f(u), u = 0, 1, 2, . . .
The warehouse manager wishes to maximize net expected profit over a whole year.

Describe how you would model the above problem as a (possibly infinite) Markov Decision Process
(MDP) (S,A, T,R), where S and A are the set of states and actions respectively, T : S ×A×S →
R+ is the transition probability function and R : S ×A×S → R denotes the reward function. Write
down clearly each component of the MDP.

5. (20 points) Bandits with side information. Consider a stochastic 2-armed bandit where each arm i’s
reward sequence is generated independently from a Bernoulli distribution with parameter µi, i = 1, 2.
Further, it is known that µ1 6= µ2 and µ1, µ2 ∈ {a, b} where 0 < a < b < 1 are known constants,
i.e., the only uncertainty is in the order. Denote ∆ := b − a. The aim is to obtain low regret
RT := Tb− E

[∑T
t=1 µIt

]
where It ∈ {1, 2} is the arm played at time t.

We know that running the UCB algorithm gives O
(

log T
∆

)
regret. But this completely ignores the

(potentially huge) side information about the arms’ rewards which is known beforehand. The problem
asks you to analyze a bandit algorithm whose regret does not scale with T !

Consider the following (rather simple) algorithm. In the beginning, play each arm once, i.e., I1 = 1,
I2 = 2. At every subsequent time t ≥ 3, if there exists an arm whose observed empirical mean so far
exceeds (a+ b)/2, then play the arm with the highest empirical mean. Else, play both arms one after
another, i.e., It = 1 followed by It+1 = 2.

(a) (3 points) Without loss of generality, let arm 1 be the optimal arm when running the algorithm.
Split the set of times when arm 2 is played according to whether its observed empirical mean
so far is (i) greater than or (ii) at most (a+ b)/2.

(b) (5 points) Bound (from above) the sum of probabilities of playing arm 2 at all times when event
(i) occurs, using Hoeffding’s inequality4. [Note: You may find the inequality ex ≥ 1+x useful.]

(c) (5 points) Bound (from above) the sum of probabilities of playing arm 2 at all times when event
(ii) occurs by using the definition of the algorithm and relating event (ii) to an event involving
the empirical mean of arm 1. Obtain a bound by applying Hoeffding as before.

(d) (7 points) Put together the conclusions of the previous parts to derive a regret bound independent
of T and depending only on ∆.

4Hoeffding’s inequality: For iid random variables X1, X2, X3, . . . bounded in [0, 1] with µ := E[X1],
P
[∑n

i=1Xi ≥ n(µ+ ε)
]
≤ exp(−2nε2). Likewise for the left tail.
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