
E1 245 - Online Prediction and Learning, Aug-Dec 2014
Final Exam
December 9, 2014

Instructions:

• There are a total of 5 questions with a maximum score of 50 points. The total time
allotted is 3 hours.

• No electronic devices or aids are allowed. You may use notes made on one A4 size sheet
of paper for reference.

• Academic dishonesty will not be tolerated.

1. (6 points) Suppose I give you a finite-state, finite-action Markov Decision Process (S,A, T, R)
where S and A are the set of states and actions respectively, T : S × A × S → R+ is the
transition probability function and R : S × A × S → R denotes the reward function. I
present you with a policy π : S → A for this MDP, claiming that π is optimal under the
infinite-horizon discounted reward criterion with a discount factor γ ∈ (0, 1).

How will you check if my claim is true or false (i.e., give an algorithm that decides if π is
optimal or not)?

Solution. We can apply one step of policy iteration to decide whether π is optimal or not.
Given the MDP and the policy π, find the value function V π

γ : S → R by solving the system
of linear equations

V π
γ (s) =

∑
s′∈S

T (s, π(s), s′)
[
R(s, π(s), s′) + γV π

γ (s′)
]
, s ∈ S.

Next, if π(s) ∈ arg maxa∈A
∑

s′∈S T (s, a, s′)
[
R(s, a, s′) + γV π

γ (s′)
]

for every state s ∈ S ,
then π is an optimal discounted-cost policy. If not, π can always be strictly improved and
thus cannot be optimal.

2. (6 points) Consider the problem of sequentially predicting a (fixed and unknown) sequence
y1, y2, . . . in Rd. At each round t = 1, 2, . . . , T , the prediction algorithm picks a point
pt ∈ Rd (knowing only y1, . . . , yt−1), the current element yt of the sequence is revealed, and
the algorithm suffers a loss l(pt, yt) = ||pt − yt||22.

If the sequence {yn} comes from the unit ball B := {x ∈ Rd : ||x||2 ≤ 1} and we use the
Follow-The-Leader (FTL) algorithm1 to predict from B, then we have seen that the regret
with respect to points in B is O(log T ) over T rounds. Show that this upper bound is order-
wise tight, i.e., for any T ≥ 1, construct a sequence y1, y2, . . . , yT from B such that FTL
suffers regret Ω(log T ) with respect to B.

[Hint: Think about ±v for any unit vector v.]

Solution. Let yt := (−1)tv, t = 1, 2, . . . for some fixed v ∈ B, ||v||2 = 1. FTL picks
p1 := 0 and pt := 1

t−1

∑t−1
s=1 ys for t ≥ 2, i.e., the sequence 0,−v, 0,−v, . . .. Hence, FTL’s

cumulative loss is

1 + (1 + 1)2 + 1 +

(
1 +

1

3

)2

+ 1 +

(
1 +

1

5

)2

+ . . .

1Assume that the initial prediction is p1 := 0.

1



In comparison, the loss of the single point 0 ∈ B over the input sequence {yt} is 1+1+1+. . .
= T . Hence, the regret of FTL wrt all of B is at least

1 + (1 + 1)2 + 1 +

(
1 +

1

3

)2

+ 1 +

(
1 +

1

5

)2

+ . . .− T

=

bT/2c∑
k=1

[(
1 +

1

2k − 1

)2

− 1

]

=

bT/2c∑
k=1

[
2

2k − 1
+

1

(2k − 1)2

]

≥
bT/2c∑
k=1

[
2

2k
+ 0

]
=

bT/2c∑
k=1

1

k
≥ logbT/2c = Ω(log T ).

3. (8 points) Consider an online convex optimization problem over Rd with convex, differen-
tiable losses lt : Rd → R, t = 1, 2, . . . and a strictly convex, differentiable regularizer R :
Rd → R. Consider the Follow-The-Regularized-Leader (FTRL) algorithm: Choose w1 ∈
Rd such2 that∇R(w1) = 0. For t ≥ 1, pick wt+1 := arg minw∈Rd

[∑t
s=1 ηls(w) +R(w)

]
.

Define Φ0(w) := R(w) and Φt(w) := Φt−1(w) + ηlt, w ∈ Rd, t ≥ 1. Prove the equivalence

wt+1 = arg min
w∈Rd

[
ηlt(w) +DΦt−1(w,wt)

]
, t ≥ 1, (1)

where DF stands for the Bregman divergence3 corresponding to F : R → R. In other
words, FTRL searches for a point that “balances” between minimizing the loss on the most
recently observed loss function and staying close (in terms of Bregman “distance”) to the
previous decision. [Hint: The minimizer of the right hand side in (1) must make its gradient
vanish. You may use the fact that a strictly convex, differentiable function F is minimized
at x if and only if ∇F (x) = 0.]

Solution. Let v := arg minw∈Rd

[
ηlt(w) +DΦt−1(w,wt)

]
. We will show that v = wt+1 as

defined in FTRL. Since v is a minimizer by definition, we must have

η∇lt(v) +∇xDΦt−1(x,wt)
∣∣
x=v

= 0.

Since∇xDΦt−1(x,wt) = ∇Φt−1(x)−∇Φt−1(wt), this means that

η∇lt(v) +∇Φt−1(v)−∇Φt−1(wt) = 0 ⇒ ∇Φt(v) = ∇Φt−1(wt).

By the definition of FTRL, wt minimizes Φt−1 over Rd, and thus ∇Φt−1(wt) = 0 which
gives∇Φt(v) = 0. Since Φt is strictly convex and differentiable, v = wt+1 and we are done.

4. (10 points) Inventory Control. The manager of a warehouse for a product factory faces
the following (idealized) problem. The warehouse has infinite capacity in terms of units of
products. At the beginning of each month, the warehouse is restocked with an additional
(integer) number of units as desired by the manager. The additional number of units added
can at most be M . The total market demand D for the entire month (again in integer units)
is random with a (fixed) probability distribution given by pj := P[D = j], j = 0, 1, 2, . . .

2Assume that this is indeed possible.
3DF (x, y) := F (x)− F (y)− 〈∇F (y), x− y〉.

2



At the end of the month, up to D units are sold from the warehouse subject to the restriction
that the warehouse cannot sell more units than what it holds. Thus, the inventory level (no.
of units in the warehouse) for the next month Y , the inventory level for the current monthX ,
the no. of restocked units in the current month W and the demand D in the current month
are related by the equation Y = max(0, X + W − D). The cost of ordering u fresh units
of the product per month into the warehouse is a function c(u), u = 0, 1, 2, . . . The cost of
storing u units in the warehouse at the beginning of each month is h(u), u = 0, 1, 2, . . . The
revenue obtained when u units are sold at the end of a month is captured by the function
f(u), u = 0, 1, 2, . . . The warehouse manager wishes to maximize net expected profit over
a whole year.

Describe how you would model the above problem as a (possibly infinite) Markov Decision
Process (MDP) (S,A, T, R), where S and A are the set of states and actions respectively,
T : S ×A×S → R+ is the transition probability function and R : S ×A×S → R denotes
the reward function. Write down clearly each component of the MDP.

Solution. S := {0, 1, 2, . . .}, A := {0, 1, 2, . . . ,M},

T (s, a, s′) :=


ps+a−s′ , 0 < s′ ≤ s+ a∑∞
k=s+a pk, s′ = 0

0, s′ > s+ a,

R(s, a, s′) :=

{
f(s+ a− s′)− c(a)− h(s), 0 ≤ s′ ≤ s+ a

0, s′ > s+ a.

5. (20 points) Bandits with side information. Consider a stochastic 2-armed bandit where
each arm i’s reward sequence is generated independently from a Bernoulli distribution with
parameter µi, i = 1, 2. Further, it is known that µ1 6= µ2 and µ1, µ2 ∈ {a, b} where
0 < a < b < 1 are known constants, i.e., the only uncertainty is in the order. Denote
∆ := b− a. The aim is to obtain low regret RT := Tb− E

[∑T
t=1 µIt

]
where It ∈ {1, 2} is

the arm played at time t.

We know that running the UCB algorithm givesO
(

log T
∆

)
regret. But this completely ignores

the (potentially huge) side information about the arms’ rewards which is known beforehand.
The problem asks you to analyze a bandit algorithm whose regret does not scale with T !

Consider the following (rather simple) algorithm. In the beginning, play each arm once, i.e.,
I1 = 1, I2 = 2. At every subsequent time t ≥ 3, if there exists an arm whose observed
empirical mean so far exceeds (a+ b)/2, then play the arm with the highest empirical mean.
Else, play both arms one after another, i.e., It = 1 followed by It+1 = 2.

(a) (3 points) Without loss of generality, let arm 1 be the optimal arm when running the
algorithm. Split the set of times when arm 2 is played according to whether its observed
empirical mean so far is (i) greater than or (ii) at most (a+ b)/2.

(b) (5 points) Bound (from above) the sum of probabilities of playing arm 2 at all times
when event (i) occurs, using Hoeffding’s inequality4. [Note: You may find the inequal-
ity ex ≥ 1 + x useful.]

4Hoeffding’s inequality: For iid random variables X1, X2, X3, . . . bounded in [0, 1] with µ := E[X1],
P [
∑n

i=1Xi ≥ n(µ+ ε)] ≤ exp(−2nε2). Likewise for the left tail.
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(c) (5 points) Bound (from above) the sum of probabilities of playing arm 2 at all times
when event (ii) occurs by using the definition of the algorithm and relating event (ii) to
an event involving the empirical mean of arm 1. Obtain a bound by applying Hoeffding
as before.

(d) (7 points) Put together the conclusions of the previous parts to derive a regret bound
independent of T and depending only on ∆.

Solution.

(a) Let c := (a+ b)/2. We have, for any time t ≥ 1,

{It = 2} = {t = 2} ∪ {µ̂2,T2(t) > c, It = 2, t ≥ 3} ∪ {µ̂2,T2(t) ≤ c, It = 2, t ≥ 3},

where Ti(t) is the number of times arm i has been played up to time t, and µ̂i,k is the
observed empirical mean of arm i’s rewards when it has been played k times.

(b) We have the bound

T∑
t=1

P
[
µ̂2,T2(t) > c, It = 2, t ≥ 3

]
≤

T∑
k=1

P [µ̂2,k > c]
(∗)
≤

T∑
k=1

exp
(
−2k∆2/4

)
≤

∞∑
k=1

exp
(
−k∆2/2

)
=

1

exp (∆2/2)− 1
≤ 2

∆2

by applying Hoeffding’s inequality in (∗).

(c) We also have, using the property of the algorithm,

T∑
t=1

P
[
µ̂2,T2(t) ≤ c, It = 2, t ≥ 3

]
≤

T∑
t=3

P
[
µ̂1,T1(t−1) ≤ c, It−1 = 1

]
≤

T∑
k=1

P [µ̂1,k ≤ c] ≤ 2

∆2
.

(d) Using the conclusions of the previous parts and the definition of regret, the regret is
bounded by

T∑
t=1

∆ · P[It = 2] = ∆ · 1 +
T∑
t=3

∆ · P[It = 2] ≤ ∆ +
4

∆
,

uniformly over all T .
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