
E1 245 - Online Prediction and Learning, Aug-Dec 2014
Homework #1

1. Generalizing the MAJORITY algorithm (5 points)
We showed that the MAJORITY algorithm for binary prediction makes at most log2 N mis-
takes using the advice of N experts whenever some expert is always predicting correctly.
Show that a straightforward modification of MAJORITY makes at most O((m+1) log2 N)
mistakes1 when some expert makes m≥ 0 mistakes.

2. The Doubling Trick for obtaining “anytime” learning algorithms (5 points)
Suppose an online learning algorithm with a parameter η > 0 enjoys a regret bound of
β

η
+ γηT for a total of T rounds, where β and γ are some positive constants (think of the

Exponential Weights forecaster for instance). If the time horizon T is known in advance,

then setting η :=
√

β

γT minimizes the bound. Consider the following tweak to obtain an
algorithm (and bound) that does NOT require knowing the horizon T beforehand (i.e., an
“anytime” algorithm). Time is divided into periods: the m-th period is formed by rounds
2m,2m+1, . . . ,2m+1−1, where m = 0,1,2, . . . In every m-th period, starting at round 2m, the

original algorithm is re-initialized and run with a parameter ηm :=
√

β

γ2m . Prove that for any

T , this modified algorithm enjoys a regret bound which is at most
√

2√
2−1

times the original
optimal regret bound.

3. A Bayesian interpretation of the Exponential Weights algorithm (5 points)
Consider the Exponential Weights forecaster in the 1-bit setting with D = Y = {0,1}, the
0−1 loss l(d,y) := 1{d 6= y}, and experts {1,2, . . . ,N}. Assume the following probabilistic
model for the outcome sequence y1,y2, . . ., where we view each outcome yt as a realization
of a Bernoulli random variable Yt . First, an expert I is drawn uniformly at random from
the set of experts. Then, for each t ∈ {1,2,3, . . .}, the random variable Yt is set to fI,t with
probability p and to 1− fI,t with probability 1− p, where p := 1/(1+ e−η) and fi,t denotes
the advice of expert i at time t. Show that the normalized weight wi,t/∑ j w j,t used by the
algorithm is in fact equal to the posterior probability P[I = i | Y1 = y1,Y2 = y2, . . . ,Yt−1 =
yt−1] that expert i was drawn given the observed outcomes so far.

4. Exponential inequality (3 points)
Prove (we used this to show a regret bound for the Randomized Weighted Majority algo-
rithm): − log(1− x)≤ x+ x2, x ∈ [0,1/2].

5. A smarter ExpWeights algorithm when the best expert’s loss is known beforehand (17 points)
Consider prediction with expert advice with a convex loss (in the first argument) bounded in
[0,1]. Suppose you know in advance what the best expert’s total loss is going to be at time
T (for instance, some quantity much less than T ) . Can you utilize this information to tune
ExpWeights better and get an improved regret bound?

(a) (5 points) First, prove that logE[esX ]≤ (es−1)E[X ] for any random variable X ∈ [0,1].
(b) (2 points) Let the experts be indexed by {1,2, . . . ,N}. Use the previous result instead of

(the weaker) Hoeffding’s inequality to show that LT (ExpWts) ≤ (ηL∗T + logN)/(1−
e−η) for ExpWeights run with parameter η > 0. Here, LT (ExpWts) is the cumulative

1Big-Oh notation: We say that f (m) = O(g(m)) if there exist constants α , m0 such that f (m)≤ αg(m) ∀m≥
m0.
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loss of the algorithm and L∗T :=mini=1,...,N Li,T is the cumulative loss of the best expert,
over T rounds.

(c) (5 points) Use the elementary inequality η ≤ (eη − e−η)/2 in the above bound to
obtain a further bound. Then, assuming that the value of L∗T is known beforehand,
show that setting the ExpWeight learning rate to η := log(1+

√
(2logN)/L∗T ) gives

regret at most
√

2L∗T logN + logN, which can be significantly small when the best
expert’s cumulative loss is small.

(d) (5 points) What if the best expert’s loss L∗t is not known beforehand but available only
at time t for each t? Taking a cue from Problem 2, can you design an algorithm that
does not require advance knowledge of the cumulative loss of the best expert, and show
that its regret bound is only worse by a constant factor compared to the one in part (c)
above?
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