
E1 245 - Online Prediction and Learning, Aug-Dec 2014
Homework #2

1. Exp-Concavity of common loss functions (16 points)

(a) (4 points) Show that if for a y∈Y and η > 0 the function F(z) := e−η l(z,y) is concave,
then l(z,y) is a convex function of z.

(b) (4 points) Show that the relative entropy loss l(x,y) := y log y
x +(1− y) log 1−y

1−x , x,y ∈
[0,1], is 1-exp-concave for all values1 of y.

(c) (4 points) Show that the square loss l(x,y) := (x− y)2, x,y ∈ [0,1], is 1
2 -exp-concave

for all values of y.

(d) (4 points) Show that the absolute value loss l(x,y) := |x− y|, x,y ∈ [0,1], cannot be
η-exp-concave for any η > 0.

2. Competing with switching sequences (12 points)
Consider learning to play one out of N actions at each time t = 1,2, . . . ,T in the full-
information setting, and where each action incurs a loss bounded in [0,1].

(a) (6 points) Suppose an ambitious algorithm designer wants to design a strategy that
can perform as well as the best offline solution, i.e., the best possible sequence of
actions that can be chosen with advance information about all actions’ losses across
all time2. Let I = {1,2, . . . ,N}T represent the set of all possible sequences of actions
at times t = 1,2, . . . ,T . Show that, when T and N are large, any algorithm that the
designer produces cannot achieve sublinear regret (in expectation over the algorithm’s
randomness) with respect to the best-performing sequence in the class I . (You may
assume that the minimax lower bound we proved in class for the absolute loss also
applies to linear losses as in our case.)

(b) (6 points) Consider the following compromise. For a sequence of actions (i1, . . . , iT )∈
I , define its complexity to be c(i1, . . . , iT ) := ∑

T
t=21{it 6= it−1}, i.e., the number of

times the sequence switches actions, and let Im := {x ∈I : c(x) ≤ m}, where m ≤
T −1. Give an online algorithm3 that achieves (expected) regret

O
(√

T
2

(
(m+1) logN +m log T

m

))
with respect to the best sequence of actions4 in

Im.

3. (4 points) Show that the entropic regularizer R(w) := ∑
N
i=1 wi logwi is 1

B -strongly convex
over {w ∈ RN

+ : ||w||1 ≤ B} with respect to the || · ||1 norm, for B > 0.

1By convention, we take 0
0 := 0 & 0 · log0 := 0.

2Denoting the loss of action i at time t by l(i, t), the best offline solution, with information in advance, plays
arm argmini l(i, t) at each time t. This is the least loss that can ever be suffered assuming only one arm can be
played at any instant.

3Disregard issues of computational efficiency.
4Feel free to use the bound

(n
k

)
≤
( ne

k

)k, 1≤ k ≤ n.
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4. Sequential probability estimation (5 points)
Consider estimating the probability of a string of symbols from an alphabet Y , |Y | =
m, with respect to the log loss. Let F be the class of all i.i.d. experts, i.e., all experts
f that predict conditional probability ft( j|yt−1) = f ( j) (with f ( j) > 0, ∑

m
j=1 f ( j) = 1)

independently of t and yt−1. For a particular sequence yT ∈ Y T , determine the best expert
(i.e., the one having the smallest cumulative loss) in F and its cumulative loss.

5. (8 points) Establish the following lemmas used in the proof of the regret bound for the
Universal Portfolio algorithm.

(a) (5 points) Let b∗ ∈ ∆m represent a Constantly Rebalancing Portfolio (CRP) on the
(non-negative) unit simplex in Rm

+. Let Ballε(b∗) := {(1− ε)b∗+ εb : b ∈ ∆m} for
ε ∈ [0,1]. If Vol(A) denotes the (m− 1)-dimensional volume5 of a set A ⊆ ∆m, then
show that Vol(Ballε(b∗)) = εm−1Vol(∆m).

(b) (3 points) Show that any CRP strategy b ∈ Ballε(b∗) achieves wealth ST (b,xT ) ≥
ST (b∗,xT )(1− ε)T in T investment periods.

6. Online Gradient Descent for portfolio selection (6 points)
Consider running (projected) Online Gradient Descent for the universal portfolio problem
with m stocks. Under the condition that the market vectors xt ≡ (x1,t , . . . ,xm,t) satisfy 1 ≥
xi,t ≥ ε > 0 for each 1≤ i≤m and t ≥ 1, show that (projected) OGD, with an appropriately
tuned learning rate, gets regret at most

√
2mT
ε

at the end of T rounds6.

5Alternatively, Vol(A) can be defined to be the probability of a point lying in the set A when it is drawn
uniformly from ∆m.

6Note that OGD is an efficient algorithm as compared to Cover’s Universal Portfolio algorithm, but its regret
performance is worse (UP enjoys O(m logT ) regret).
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