
E1 245 - Online Prediction and Learning, Aug-Dec 2014
Homework #3

1. Regret Minimization and Classical Optimization (8 points)
Suppose you have a good algorithm for online convex optimization which, over the (con-
vex) domain K and for a sequence of loss functions from the family L of convex functions,
can achieve regret R(T ) = o(T ) in T rounds, T ∈ {1, 2, . . .}. Now, suppose you wish
to minimize a given function f ∈ L over K to within accuracy ε > 0, i.e., output x ∈ K
satisfying f(x) ≤ miny∈K f(y) + ε. Describe how you would accomplish this using the
above.

2. Exponential Weights as FTRL (10 points)
Show that executing Follow The Regularized Leader (FTRL) on the simplex
∆N :=

{
(x1, . . . , xN) :

∑N
i=1 xi = 1,∀i xi ≥ 0

}
with the entropic regularizer1 R(x) ≡

Rη(x) := 1
η

∑N
i=1 xi log xi, and for linear loss functions ft(x) = 〈zt, x〉, zt ∈ RN , is

equivalent to running the Exponential Weights algorithm on N experts with losses {zt}
and parameter η.
(Hint: It is possible to derive this directly from first principles and the definition of the
FTRL step. However, an alternative way is by using (a) the equivalence between FTRL and
(unconstrained minimization + Bregman projection) proven in class, and (b) observing that
Bregman projection wrt the regularizer R onto ∆N is equivalent to scaling by the || · ||1
norm.)

3. Bregman Divergences (2× 3 points)
Let DR(x, y) be the Bregman divergence corresponding to a strictly convex function R :
Rd → R. Show the following properties of the Bregman divergence:

(a) (‘Three point inequality’) ∀u, v, w ∈ Rd : DR(u, v) +DR(v, w) = DR(u,w) + 〈u−
v,∇R(w)−∇R(v)〉.

(b) ∇xDR(x, y) = ∇R(x)−∇R(y).

4. Fenchel Duals (3× 4 points)
Compute the Fenchel dual functions for the following on Rd.

(a) F (x) = ex1 + · · ·+ exd .

(b) F (x) = log(ex1 + · · ·+ exd).

(c) F (x) = 1
2
||x||2p, p ∈ [1,∞].

5. Numerical Evaluation (40 points)
Consider the stochastic multi-armed bandit with N arms and Bernoulli reward distribu-
tions for each arm. For N ∈ {10, 100, 1000}, setting the arms’ mean rewards to be,
say, equi-spaced in (0, 1), simulate each of the following bandit algorithms (preferably
in MATLAB/C/C++).
10 log 0 is to be interpreted as 0 in the definition.
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(a) Upper Confidence Bound (UCB)

(b) Thompson Sampling with the Beta(1,1) prior per arm

(c) Thompson Sampling with the Beta(0.5,0.5) prior per arm

(d) EXP3 with (optimally tuned) horizon-dependent parameter η :=
√

2 logN
NT

(e) EXP3.P with parameters δ := 0.05, β :=
√

log(N/δ)
NT

, η := 0.95
√

logN
NT

, γ := 1.05
√

N logN
T

For each algorithm,

(a) Plot the cumulative regret for various values of time horizon
T ∈ {10, 50, 100, 500, 1000, 5000, . . . , 106, 5× 106}, averaged across many, say 105,
sample paths (the more the better). Along with the averaged regret, you should also
display a measure of its variance in the form of, say, error bars of width 1 standard
deviation around the mean values (the errorbar or shadedErrorBar function
in MATLAB can help do this).

(b) Comment (broadly) on the nature of the average regret curves you have obtained.
What is the observed scaling of regret with the time horizon? How does it fare com-
pared to theoretical regret bounds for the algorithm?

Finally, compare the performance of all the algorithms together. Can you offer an explana-
tion for why some perform better than others? Also, turn in your code by email.
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