Homework 3 - Solutions

1. Given, there exists an algorithm for OCO, which for a sequence of loss functions f; € L gives a
regret of R(T) = o(T'). Let us feed the function f continuously into this algorithm at every time
t. Then, R(T) = Zle(f(act) —infrex f(2)). As R(T) = o(T), we have lim,_, % =0, i.e., for
every € > 0, AN, s.t. % < ¢ for every T > N.. So for any T' > N,, we have,
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where the inequality follows since f is convex within /C. Thus choosing z* = Zthl(xt /T) at
T = N, gives

f(@®) < inf f(z)+ RT) < inf f(z)+e.

e T zel

2. Thanks to the hint, we know that executing the FTRL algorithm, and executing (unconstrained
minimization + Bregman Projection), are one and the same. So to minimize Zz;} fi(z) + Ry ()
over x € R, let us differentiate it and equate it to zero.
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By (< 214-1,0 > +— Zwi logz;) =0= (zi)l;t,l—&—ﬁ(l—i—logaci) =0=xz; =exp(—n(2zi)14-1 — 1).
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Now thanks again to the hint, we know that the Bregman projection of x;’s onto Ay is equivalent
to scaling the x;’s by its L1 norm. Thus we have

(1) = exp (—n(2i)1:4—1 — 1) _ exp (—n(z;)1:4—1)
S exp (—n(z)ie1 — 1) S0 exp (—n(z)1-1)

Running the exponential weights algorithm with N experts with losses z;, we obtain z;; =

exp (—n Zi;ll (zi)s). These weights can be normalized, since proportional weights give rise to

the same prediction. So when we normalize z;; by its L; norm, we have

Tis = CXp (—U(Zi)l:t—l) )

TN exp (—n(z) 1)

Note that z}(t) and x;+ are the same. Hence the result.
Aside: To prove that the Bregman projection of y > 0 w.r.t. to R onto Ay is just scaling it by
its Ly norm, let us consider the optimization problem of minimizing Dr(z,y) = R(z) — R(y) —
VR(y)T (z — ) subject to ZZI\; x; = 1. The Lagrangian L is given by
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Differentiating it partially w.r.t. z; and equating it to 0, we get A = log £ for every i, implying

x = ay, a > 0 being a constant. But we know that Zf\il z; =1. Thus z; = Z,f,liiy
i=1 97

3. We know that Dg(z,y) = R(z) — R(y) — VR(y)* (z — y).



(a)

Dgr(u,v) + Dg(v,w) — Dgr(u,w) = [R(u) — R(v) — VR(v)T (u — v)]
+ [R(v) — R(w) = VR(w)" (v — w)] - [R(u) — R(w) = VR(w)" (u - w)]
= —VR)T(u—v) = VR(w)T (v — u) = (VR(w) — VR())" (u —v).

V.Dg(z,y) = Vo(R(z) — R(y) — VR(y)" (z — y))
d

— VR(z) -0V, (Zm - ynaf,R(y)) = VR(z) - VR(y).

i=1 @

4. Fenchel dual h(0) of F(x) is defined to be h(#) = sup,cpe(< x,0 > —F(z)). Let us find the
stationary point that maximizes < x,6 > —F(x) by differentiating it and equating the differential
to zero. Note that as the given functions are convex in R?, the Hessian —V?F(x) is always negative
semidefinite, and thus no more checking is required.

(a)

0 — VF(x) = 0 implies x; = log; for any 6; > 0. Thus h(f) = Z?Zl 0;(log6; — 1), for every
0 > 0. The case 6; = 0 works since we consider 0log0 = 0. If there exists an ¢ s.t. 6; < 0,
then the corresponding x; can be set to —oo, thus making h(6) = co. Thus we have

h(9) = { > i—1 bi(logb; — 1) if 6 > 0;

00 otherwise.

6 — VF(z) = 0 implies 0; = de;e”] This can be satisfied for every ¢ only when Zle 0; =

=1
1,0; > 0. In such a case, we have x; = log6;, and thus h(f) = Zle 0;logl, = —H(0), V0 €
Ay, where H refers to the entropy function. If there exists an i s.t. 6; < 0, then the
corresponding x; can be set to —oo, thus making h(d) = co. If § > 0 but ||6]|; # 1, then let
x; = X for every i. We have < z,0 > —F(z) = A(||0||1 — 1) — logd. This means that we can
drive X either to co or —oo appropriately for any 6 > 0 s.t.]|6|| # 1, thus making h(f) = cc.
Now we have

—H(Q) if 0 € Ag;

00 otherwise.

o) = {

(2/p)—1
0 — VF(z) = 0 implies 6; = sgn(z;) | z; |[P~1 (Z?:l | z; |p> ,p € (1,00). This means
that
4 (»—1)/p 4 @-p)/(-1) , 4 (=1)/p
ole. = (Zwm—l) _ (Zm |p) .(zm— )
i1 i=1 i=1
d 1/p
= (Z | |p> = [
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Thus to maximize < 2,6 > —F(z), z is chosen s.t. [|z[|, = [|6]lq, where ¢ = 27, or %—l—% =1
1
More explicitly, z; = —220DI%IP 1 g5 we have
(Z¢il0ie) a>=D
(Saie7) ‘ R T
i=1 1Y
h(0) =<0 > ~F(x) = =507 = (Z | 6 ) = 11615 = 311013
(S 16i]e) ™7
where pg was substituted by p + ¢ in the last equality. Hence, h(0) = %||9||3,V9 € RY, if

p € (1,00).



For p = 1, § — VF(x) = 0 implies 0; = sgn(z;)||x||1, but this can hold only if | 6; | is
same for every i. If not, we would get infeasible conditions. In that case, we look at the
boundary conditions, where z; = 0 for a few components. If we choose xz; = 0 for any
¢ having 6; < max;| 6; |, then we get feasible conditions to satisfy. We can then derive

;= sgn(@i)%, and thus have h(f) = max; 07 = ||0]|%.

For p = o0, § — VF(x) = 0 implies 6; = sgn(x;) max; | x; |, but this can hold only if | 6; |
is same for every 4. If not, we would get infeasible conditions. In that case, we look at the
boundary conditions, where | z; | are equal for a few components. If we choose all | z; |’s to
be equal, then we get feasible conditions to satisfy. We can then derive x; = sgn(6;)]|0]1, and
thus have h(6) = 3||0|3.

Hence, h(0) = £[|6]|2,V6 € RY, ¢ = 525 for any p € [1,00].



