Homework 3 - Solutions

1. Given, there exists an algorithm for OCO, which for a sequence of loss functions $f_t \in \mathcal{L}$ gives a regret of R(T) = o(T). Let us feed the function f continuously into this algorithm at every time t. Then, $R(T) = \sum_{t=1}^{T} (f(x_t) - \inf_{x \in \mathcal{K}} f(x))$. As R(T) = o(T), we have $\lim_{n \to \infty} \frac{R(T)}{T} = 0$, i.e., for every $\epsilon > 0$, $\exists N_{\epsilon}$ s.t. $\frac{R(T)}{T} \leq \epsilon$ for every $T \geq N_{\epsilon}$. So for any $T \geq N_{\epsilon}$, we have,

$$\frac{R(T)}{T} = \frac{1}{T} \left(\sum_{t=1}^{T} (f(x_t) - \inf_{x \in \mathcal{K}} f(x)) \right) \ge f \left(\sum_{t=1}^{T} (x_t/T) \right) - \inf_{x \in \mathcal{K}} f(x)$$

where the inequality follows since f is convex within \mathcal{K} . Thus choosing $x^* = \sum_{t=1}^{T} (x_t/T)$ at $T = N_{\epsilon}$, gives

$$f(x^*) \le \inf_{x \in \mathcal{K}} f(x) + \frac{R(T)}{T} \le \inf_{x \in \mathcal{K}} f(x) + \epsilon$$

2. Thanks to the hint, we know that executing the FTRL algorithm, and executing (unconstrained minimization + Bregman Projection), are one and the same. So to minimize $\sum_{i=1}^{t-1} f_i(x) + R_\eta(x)$ over $x \in \mathbb{R}_n$, let us differentiate it and equate it to zero.

$$\frac{\partial}{\partial x_i} (\langle z_{1:t-1}, x \rangle + \frac{1}{\eta} \sum_{i=1}^N x_i \log x_i) = 0 \Rightarrow (z_i)_{1:t-1} + \frac{1}{\eta} (1 + \log x_i) = 0 \Rightarrow x_i = \exp\left(-\eta(z_i)_{1:t-1} - 1\right) = 0$$

Now thanks again to the hint, we know that the Bregman projection of x_i 's onto Δ_N is equivalent to scaling the x_i 's by its L_1 norm. Thus we have

$$x_i^*(t) = \frac{\exp\left(-\eta(z_i)_{1:t-1} - 1\right)}{\sum_{j=1}^N \exp\left(-\eta(z_j)_{1:t-1} - 1\right)} = \frac{\exp\left(-\eta(z_i)_{1:t-1}\right)}{\sum_{j=1}^N \exp\left(-\eta(z_j)_{1:t-1}\right)}$$

Running the exponential weights algorithm with N experts with losses z_t , we obtain $x_{i,t} = \exp\left(-\eta \sum_{s=1}^{t-1} (z_i)_s\right)$. These weights can be normalized, since proportional weights give rise to the same prediction. So when we normalize $x_{i,t}$ by its L_1 norm, we have

$$x_{i,t} = \frac{\exp\left(-\eta(z_i)_{1:t-1}\right)}{\sum_{j=1}^{N} \exp\left(-\eta(z_j)_{1:t-1}\right)}$$

Note that $x_i^*(t)$ and $x_{i,t}$ are the same. Hence the result.

Aside: To prove that the Bregman projection of $y \ge 0$ w.r.t. to R onto Δ_N is just scaling it by its L_1 norm, let us consider the optimization problem of minimizing $D_R(x,y) = R(x) - R(y) - \nabla R(y)^T(x-y)$ subject to $\sum_{i=1}^N x_i = 1$. The Lagrangian \mathcal{L} is given by

$$\mathcal{L} = \sum_{i=1}^{N} (x_i \log x_i - y_i \log y_i - (1 + \log y_i)(x_i - y_i) + \lambda x_i) - \lambda = \sum_{i=1}^{N} (x_i \log \frac{x_i}{y_i} + (\lambda - 1)x_i + y_i) - \lambda.$$

Differentiating it partially w.r.t. x_i and equating it to 0, we get $\lambda = \log \frac{y_i}{x_i}$ for every *i*, implying x = ay, a > 0 being a constant. But we know that $\sum_{i=1}^{N} x_i = 1$. Thus $x_i = \frac{y_i}{\sum_{i=1}^{N} y_i}$.

3. We know that $D_R(x, y) = R(x) - R(y) - \nabla R(y)^T (x - y)$.

(a)

$$D_R(u,v) + D_R(v,w) - D_R(u,w) = [R(u) - R(v) - \nabla R(v)^T (u-v)] + [R(v) - R(w) - \nabla R(w)^T (v-w)] - [R(u) - R(w) - \nabla R(w)^T (u-w)] = -\nabla R(v)^T (u-v) - \nabla R(w)^T (v-u) = (\nabla R(w) - \nabla R(v))^T (u-v).$$

(b)

$$\nabla_x D_R(x,y) = \nabla_x (R(x) - R(y) - \nabla R(y)^T (x-y))$$

= $\nabla R(x) - 0 - \nabla_x \left(\sum_{i=1}^d (x_i - y_i) \frac{\partial}{\partial y_i} R(y) \right) = \nabla R(x) - \nabla R(y).$

- 4. Fenchel dual $h(\theta)$ of F(x) is defined to be $h(\theta) = \sup_{x \in \mathbb{R}^d} (\langle x, \theta \rangle F(x))$. Let us find the stationary point that maximizes $\langle x, \theta \rangle F(x)$ by differentiating it and equating the differential to zero. Note that as the given functions are convex in \mathbb{R}^d , the Hessian $-\nabla^2 F(x)$ is always negative semidefinite, and thus no more checking is required.
 - (a) $\theta \nabla F(x) = 0$ implies $x_i = \log \theta_i$ for any $\theta_i \ge 0$. Thus $h(\theta) = \sum_{i=1}^d \theta_i (\log \theta_i 1)$, for every $\theta \ge 0$. The case $\theta_i = 0$ works since we consider $0 \log 0 = 0$. If there exists an *i* s.t. $\theta_i < 0$, then the corresponding x_i can be set to $-\infty$, thus making $h(\theta) = \infty$. Thus we have

$$h(\theta) = \begin{cases} \sum_{i=1}^{n} \theta_i (\log \theta_i - 1) & \text{if } \theta \ge 0; \\ \infty & \text{otherwise.} \end{cases}$$

(b) $\theta - \nabla F(x) = 0$ implies $\theta_i = \frac{e^{x_i}}{\sum_{j=1}^{d} e^{x_j}}$. This can be satisfied for every *i* only when $\sum_{i=1}^{d} \theta_i = 1, \theta_i \ge 0$. In such a case, we have $x_i = \log \theta_i$, and thus $h(\theta) = \sum_{i=1}^{d} \theta_i \log \theta_i = -H(\theta), \forall \theta \in \Delta_d$, where *H* refers to the entropy function. If there exists an *i* s.t. $\theta_i < 0$, then the corresponding x_i can be set to $-\infty$, thus making $h(\theta) = \infty$. If $\theta \ge 0$ but $\|\theta\|_1 \neq 1$, then let $x_i = \lambda$ for every *i*. We have $\langle x, \theta \rangle - F(x) = \lambda(\|\theta\|_1 - 1) - \log d$. This means that we can drive λ either to ∞ or $-\infty$ appropriately for any $\theta \ge 0$ s.t. $\|\theta\| \neq 1$, thus making $h(\theta) = \infty$. Now we have

$$h(\theta) = \begin{cases} -H(\theta) & \text{if } \theta \in \Delta_d; \\ \infty & \text{otherwise.} \end{cases}$$

(c) $\theta - \nabla F(x) = 0$ implies $\theta_i = \operatorname{sgn}(x_i) \mid x_i \mid^{p-1} \left(\sum_{i=1}^d \mid x_i \mid^p \right)^{(2/p)-1}, p \in (1, \infty)$. This means that

$$\begin{aligned} \|\theta\|_{\frac{p}{p-1}} &= \left(\sum_{i=1}^{d} |\theta_{i}|^{\frac{p}{p-1}}\right)^{(p-1)/p} = \left[\left(\sum_{i=1}^{d} |x_{i}|^{p}\right)^{(2-p)/(p-1)} \cdot \left(\sum_{i=1}^{d} |x_{i}|^{p}\right)\right]^{(p-1)/p} \\ &= \left(\sum_{i=1}^{d} |x_{i}|^{p}\right)^{1/p} = \|x\|_{p}. \end{aligned}$$

Thus to maximize $\langle x, \theta \rangle - F(x), x$ is chosen s.t. $||x||_p = ||\theta||_q$, where $q = \frac{p}{p-1}$, or $\frac{1}{p} + \frac{1}{q} = 1$. More explicitly, $x_i = \frac{\operatorname{sgn}(\theta_i)|\theta_i|^{\frac{1}{p-1}}}{\left(\sum_{i=1}^d |\theta_i|^q\right)^{\frac{2-p}{q(p-1)}}}$. So we have

$$h(\theta) = \langle x, \theta \rangle - F(x) = \frac{\left(\sum_{i=1}^{d} |\theta_i|^{\frac{p}{p-1}}\right)}{\left(\sum_{i=1}^{d} |\theta_i|^{q}\right)^{\frac{2-p}{q(p-1)}}} - \frac{1}{2} \|\theta\|_q^2 = \left(\sum_{i=1}^{d} |\theta_i|^{q}\right)^{\frac{qp-q-2+p}{q(p-1)}} - \frac{1}{2} \|\theta\|_q^2 = \frac{1}{2} \|\theta\|_q^2$$

where pq was substituted by p + q in the last equality. Hence, $h(\theta) = \frac{1}{2} \|\theta\|_q^2, \forall \theta \in \mathbb{R}^d$, if $p \in (1, \infty)$.

For p = 1, $\theta - \nabla F(x) = 0$ implies $\theta_i = \operatorname{sgn}(x_i) ||x||_1$, but this can hold only if $|\theta_i|$ is same for every *i*. If not, we would get infeasible conditions. In that case, we look at the boundary conditions, where $x_i = 0$ for a few components. If we choose $x_i = 0$ for any *i* having $\theta_i < \max_i |\theta_i|$, then we get feasible conditions to satisfy. We can then derive $x_i = \operatorname{sgn}(\theta_i) \frac{|\theta_i| \mathbf{1}(|\theta_i| = \max_i |\theta_i|)}{\#|\theta_i| = \max_i |\theta_i|}$, and thus have $h(\theta) = \max_i \theta_i^2 = ||\theta||_{\infty}^2$.

For $p = \infty$, $\theta - \nabla F(x) = 0$ implies $\theta_i = \operatorname{sgn}(x_i) \max_i |x_i|$, but this can hold only if $|\theta_i|$ is same for every *i*. If not, we would get infeasible conditions. In that case, we look at the boundary conditions, where $|x_i|$ are equal for a few components. If we choose all $|x_i|$'s to be equal, then we get feasible conditions to satisfy. We can then derive $x_i = \operatorname{sgn}(\theta_i) ||\theta||_1$, and thus have $h(\theta) = \frac{1}{2} ||\theta||_1^2$.

Hence, $h(\theta) = \frac{1}{2} \|\theta\|_q^2, \forall \theta \in \mathbb{R}^d, q = \frac{p}{p-1} \text{ for any } p \in [1, \infty].$