
Homework 3 - Solutions

1. Given, there exists an algorithm for OCO, which for a sequence of loss functions ft ∈ L gives a
regret of R(T ) = o(T ). Let us feed the function f continuously into this algorithm at every time
t. Then, R(T ) =

∑T
t=1(f(xt)− infx∈K f(x)). As R(T ) = o(T ), we have limn→∞

R(T )
T = 0, i.e., for

every ε > 0, ∃Nε s.t. R(T )
T ≤ ε for every T ≥ Nε. So for any T ≥ Nε, we have,

R(T )
T

=
1
T

(
T∑
t=1

(f(xt)− inf
x∈K

f(x))

)
≥ f

(
T∑
t=1

(xt/T )

)
− inf
x∈K

f(x)

where the inequality follows since f is convex within K. Thus choosing x∗ =
∑T
t=1(xt/T ) at

T = Nε, gives

f(x∗) ≤ inf
x∈K

f(x) +
R(T )
T
≤ inf
x∈K

f(x) + ε.

2. Thanks to the hint, we know that executing the FTRL algorithm, and executing (unconstrained
minimization + Bregman Projection), are one and the same. So to minimize

∑t−1
i=1 fi(x) + Rη(x)

over x ∈ Rn, let us differentiate it and equate it to zero.

∂

∂xi
(< z1:t−1, x > +

1
η

N∑
i=1

xi log xi) = 0⇒ (zi)1:t−1+
1
η

(1+log xi) = 0⇒ xi = exp (−η(zi)1:t−1 − 1).

Now thanks again to the hint, we know that the Bregman projection of xi’s onto ∆N is equivalent
to scaling the xi’s by its L1 norm. Thus we have

x∗i (t) =
exp (−η(zi)1:t−1 − 1)∑N
j=1 exp (−η(zj)1:t−1 − 1)

=
exp (−η(zi)1:t−1)∑N
j=1 exp (−η(zj)1:t−1)

.

Running the exponential weights algorithm with N experts with losses zt, we obtain xi,t =
exp (−η

∑t−1
s=1(zi)s). These weights can be normalized, since proportional weights give rise to

the same prediction. So when we normalize xi,t by its L1 norm, we have

xi,t =
exp (−η(zi)1:t−1)∑N
j=1 exp (−η(zj)1:t−1)

.

Note that x∗i (t) and xi,t are the same. Hence the result.

Aside: To prove that the Bregman projection of y ≥ 0 w.r.t. to R onto ∆N is just scaling it by
its L1 norm, let us consider the optimization problem of minimizing DR(x, y) = R(x) − R(y) −
∇R(y)T (x− y) subject to

∑N
i=1 xi = 1. The Lagrangian L is given by

L =
N∑
i=1

(xi log xi − yi log yi − (1 + log yi)(xi − yi) + λxi)− λ =
N∑
i=1

(xi log
xi
yi

+ (λ− 1)xi + yi)− λ.

Differentiating it partially w.r.t. xi and equating it to 0, we get λ = log yi

xi
for every i, implying

x = ay, a > 0 being a constant. But we know that
∑N
i=1 xi = 1. Thus xi = yiPN

i=1 yi
.

3. We know that DR(x, y) = R(x)−R(y)−∇R(y)T (x− y).
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(a)

DR(u, v) +DR(v, w)−DR(u,w) = [R(u)−R(v)−∇R(v)T (u− v)]

+ [R(v)−R(w)−∇R(w)T (v − w)]− [R(u)−R(w)−∇R(w)T (u− w)]

= −∇R(v)T (u− v)−∇R(w)T (v − u) = (∇R(w)−∇R(v))T (u− v).

(b)

∇xDR(x, y) = ∇x(R(x)−R(y)−∇R(y)T (x− y))

= ∇R(x)− 0−∇x

(
d∑
i=1

(xi − yi)
∂

∂yi
R(y)

)
= ∇R(x)−∇R(y).

4. Fenchel dual h(θ) of F (x) is defined to be h(θ) = supx∈Rd(< x, θ > −F (x)). Let us find the
stationary point that maximizes < x, θ > −F (x) by differentiating it and equating the differential
to zero. Note that as the given functions are convex in Rd, the Hessian −∇2F (x) is always negative
semidefinite, and thus no more checking is required.

(a) θ −∇F (x) = 0 implies xi = log θi for any θi ≥ 0. Thus h(θ) =
∑d
i=1 θi(log θi − 1), for every

θ ≥ 0. The case θi = 0 works since we consider 0 log 0 = 0. If there exists an i s.t. θi < 0,
then the corresponding xi can be set to −∞, thus making h(θ) =∞. Thus we have

h(θ) =
{ ∑n

i=1 θi(log θi − 1) if θ ≥ 0;
∞ otherwise.

(b) θ −∇F (x) = 0 implies θi = exiPd
j=1 e

xj
. This can be satisfied for every i only when

∑d
i=1 θi =

1, θi ≥ 0. In such a case, we have xi = log θi, and thus h(θ) =
∑d
i=1 θi log θi = −H(θ), ∀θ ∈

∆d, where H refers to the entropy function. If there exists an i s.t. θi < 0, then the
corresponding xi can be set to −∞, thus making h(θ) = ∞. If θ ≥ 0 but ‖θ‖1 6= 1, then let
xi = λ for every i. We have < x, θ > −F (x) = λ(‖θ‖1 − 1) − log d. This means that we can
drive λ either to ∞ or −∞ appropriately for any θ ≥ 0 s.t.‖θ‖ 6= 1, thus making h(θ) = ∞.
Now we have

h(θ) =
{
−H(θ) if θ ∈ ∆d;
∞ otherwise.

(c) θ − ∇F (x) = 0 implies θi = sgn(xi) | xi |p−1
(∑d

i=1 | xi |p
)(2/p)−1

, p ∈ (1,∞). This means
that

‖θ‖ p
p−1

=

(
d∑
i=1

| θi |
p

p−1

)(p−1)/p

=

( d∑
i=1

| xi |p
)(2−p)/(p−1)

.

(
d∑
i=1

| xi |p
)(p−1)/p

=

(
d∑
i=1

| xi |p
)1/p

= ‖x‖p.

Thus to maximize < x, θ > −F (x), x is chosen s.t. ‖x‖p = ‖θ‖q, where q = p
p−1 , or 1

p + 1
q = 1.

More explicitly, xi = sgn(θi)|θi|
1

p−1

(Pd
i=1|θi|q)

2−p
q(p−1)

. So we have

h(θ) =< x, θ > −F (x) =

(∑d
i=1 | θi |

p
p−1

)
(∑d

i=1 | θi |q
) 2−p

q(p−1)

−1
2
‖θ‖2q =

(
d∑
i=1

| θi |q
) qp−q−2+p

q(p−1)

−1
2
‖θ‖2q =

1
2
‖θ‖2q

where pq was substituted by p + q in the last equality. Hence, h(θ) = 1
2‖θ‖

2
q,∀θ ∈ Rd, if

p ∈ (1,∞).
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For p = 1, θ − ∇F (x) = 0 implies θi = sgn(xi)‖x‖1, but this can hold only if | θi | is
same for every i. If not, we would get infeasible conditions. In that case, we look at the
boundary conditions, where xi = 0 for a few components. If we choose xi = 0 for any
i having θi < maxi | θi |, then we get feasible conditions to satisfy. We can then derive
xi = sgn(θi)

|θi|1(|θi|=maxi |θi|)
#|θi|=maxi |θi| , and thus have h(θ) = maxi θ2i = ‖θ‖2∞.

For p = ∞, θ − ∇F (x) = 0 implies θi = sgn(xi) maxi | xi |, but this can hold only if | θi |
is same for every i. If not, we would get infeasible conditions. In that case, we look at the
boundary conditions, where | xi | are equal for a few components. If we choose all | xi |’s to
be equal, then we get feasible conditions to satisfy. We can then derive xi = sgn(θi)‖θ‖1, and
thus have h(θ) = 1

2‖θ‖
2
1.

Hence, h(θ) = 1
2‖θ‖

2
q,∀θ ∈ Rd, q = p

p−1 for any p ∈ [1,∞].
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