
E1 245 - Online Prediction and Learning, Aug-Dec 2014
Homework #4

1. Stochastic Gradient Descent (6 points)
Prove the following theorem. Suppose ft : K → R, t = 1, 2, 3, . . ., is a sequence of
convex, differentiable functions on the convex set K ⊆ Rd with 0 ∈ K. Let η > 0, w1 :=
0, and1 wt+1 := ΠK [wt − ηgt], t = 1, 2, 3, . . . where gt is a random variable satisfying
E [gt|wt] = ∇ft(wt) and ||gt||2 ≤ G almost surely for some scalar constant G. Denote
D := maxx∈K ||x||2. Then, for any time horizon T ≥ 1,
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2. Finite Time Planning (5 points)
Consider a (time-homogeneous) Markov Decision Process (MDP) with two states and two
actions, and finite time horizon N . Choose any non-trivial (non-zero and unequal) transi-
tion probabilities {T (s, a, s′)}s,a,s′ and rewards {R(s, a)}s,a. Draw a state transition dia-
gram for your model, write down explicitly the value iteration equation for this model, and
compute the optimal value function and optimal policy for N = 3 (assuming zero terminal
rewards).

3. Risk-sensitive Control (15 points)
Consider an MDP (S,A, R, T ), R : S ×A → R, with the exponential (finite-time) reward
objective maxπ≡(π1,...,πN ) J

π
β (s). Here,

Jπβ (s) := sign(β) · Eπ
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where sign(·) is the sign function2, the time horizon N is deterministic and known, and
sk, ak and rk := R(sk, ak) are the state, action taken and reward obtained in round k
respectively. This reward metric is called risk-averse or risk-seeking depending on the sign
of β (i.e., −1 or +1).

(a) (3 points) What is the optimal policy as β → 0? (Hint: Use a Taylor series expansion.)

(b) (6 points) Suggest a recursive planning algorithm that obtains the optimal value func-
tion V ∗β,k(s), 1 ≤ k ≤ N , s ∈ S, and policy π∗ for this problem. Express the optimal
value function in terms of v∗β,k := log V ∗k (s), and compare with the standard case.

(c) (6 points) Explain what happens to the optimal policy for β → +∞ and β → −∞.
Propose simple recursive algorithms for these two extreme regime cases of β.

1ΠK(·) denotes projection with respect to the Euclidean norm onto K.
2The sign of 0 is arbitrarily defined to be 0.
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4. Programming Exercise: Planning algorithms (30 points)
Generate a non-trivial (i.e., non-zero, non-1 transition probabilities) MDP randomly, using
any reasonable scheme of your choice, with 10 states and 5 actions. Choose a discount
factor γ ∈ (0, 1), and find the optimal infinite-horizon discounted policy using both (a)
Value iteration run until a suitably small convergence threshold (say 10−6) and (b) Policy
iteration. Record the number of value/policy iterations in (a) and (b), the per-iteration CPU
time, and the total running time.

Repeat this exercise for various generated MDPs and for a sequence of γ values gradually
approaching 1. What happens to the performance of both these algorithms? Is one better
than the other in practice?

(Resource: If you use MATLAB, you might find the following MDP algorithms package
convenient: http://www7.inra.fr/mia/T/MDPtoolbox/Documentation.html)
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