
Homework 4 - Solutions

1. Let w∗ := arg minw∈K
∑T
t=1 ft(w). Since ft is a convex function, we have

ft(wt)− ft(w∗) = 〈∇ft(wt), wt − w∗〉 = 〈E[gt | wt], wt − w∗〉 .

Let yt := wt−1 − ηgt−1 (hence wt = ΠK(yt)), and thus

ft(wt)− ft(w∗) =
1
2η

E[2(wt − yt+1)T (wt − w∗) | wt]

=
1
2η
(
‖wt − w∗‖2 + E[‖wt − yt+1‖2 − ‖w∗ − yt+1‖2 | wt]

)
=

1
2η
(
‖wt − w∗‖2 + E[η2‖gt‖2 − ‖w∗ − yt+1‖2 | wt]

)
.

But ‖w∗ − yt+1‖2 ≥ ‖w∗ − wt+1‖2 since wt+1 = ΠK(yt+1), and K is convex. Thus

ft(wt)− ft(w∗) ≤
1
2η
(
‖wt − w∗‖2 + E[η2‖gt‖2 − ‖w∗ − wt+1‖2 | wt]

)
.

Taking expectation w.r.t. wt on both sides, we have

E[ft(wt)− ft(w∗)] ≤
1
2η

E
[
‖wt − w∗‖2 + η2‖gt‖2 − ‖w∗ − wt+1‖2

]
.

Summing over t = 1, 2, . . . , T , we have

E

[
T∑
t=1

(ft(wt)− ft(w∗))

]
≤ η

2
E

[
T∑
t=1

‖gt‖2
]

+
E[‖w1 − w∗‖2]

2η
≤ η

2
TG2 +

D2

2η

where the last inequality follows since ‖gt‖ ≤ G w.p. 1, w1 = 0, and D = maxw∈K ‖x‖.

2. Let us choose states 0 and 1, and choose actions “LEFT” and “RIGHT” for both the states. The
state transition diagram is as in Figure 1. The thick lines in the figure corresponds to the action
“LEFT”, and the dotted lines, to the action “RIGHT”. Thus the state transition matrices for the
actions look like

TLEFT =
(
.9 .1
.8 .2

)
, TRIGHT =

(
.3 .7
.1 .9

)
.

Figure 1: State Transition Diagram
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Now, let R(0,LEFT) = 1, R(0,RIGHT) = 3, R(1,LEFT) = 2, R(1,RIGHT) = 4. The value
iteration equation for this MDP is

V2(0) = max
a∈{LEFT, RIGHT}

R(0, a) = R(0,RIGHT) = 3

V2(1) = max
a∈{LEFT, RIGHT}

R(1, a) = R(1,RIGHT) = 4

V1(0) = max
a∈{LEFT, RIGHT}

(
R(0, a) +

∑
s∈{0,1}

T (0, a, s)V2(s)
)

= max(4.1, 6.7) = 6.7

V1(1) = max
a∈{LEFT, RIGHT}

(
R(1, a) +

∑
s∈{0,1}

T (1, a, s)V2(s)
)

= max(5.2, 7.9) = 7.9

V0(0) = max
a∈{LEFT, RIGHT}

(
R(0, a) +

∑
s∈{0,1}

T (0, a, s)V1(s)
)

= max(7.82, 10.54) = 10.54

V0(1) = max
a∈{LEFT, RIGHT}

(
R(1, a) +

∑
s∈{0,1}

T (0, a, s)V1(s)
)

= max(8.94, 11.78) = 11.78.

Thus the optimal value function V ∗0 (0) = 10.54, and V ∗0 (1) = 11.78. The optimal policy is to
choose “RIGHT” always.

3. (a) When β → 0, we have exp(β
∑N
i=1 ri) ≈ 1 +

∑N
i=1 ri. Thus maximizing Jπβ (s) is equivalent to

maximizing sgn(β)Eπ[1 +
∑N
i=1 ri], which in turn is equivalent to maximizing the reward-to-

go-function V πk (s) defined in class. Thus the optimal policy for low values of β is just

πk(s) ∈ arg max
a

(
R(s, a) +

∑
s′∈S

T (s, a, s′)V ∗k+1(s′)

)
.

(b) Define the Reward-to-go function as V πβ,k(s) := Eπ[sgn(β) exp(β
∑N
i=k+1 ri) | Sk = s]. Let the

optimal value function V ∗β,k(s) = maxπ V πβ,k(s). On the same lines of the proof shown in class,
we will show that

V ∗β,k(s) = max
a

(
sgn(β) exp(βR(s, a))

(∑
s′∈S

T (s, a, s′)V ∗β,k+1(s′)

))
. (1)

We will show (1) by mathematical induction. The equation is true when k = N , since
V ∗β,N (s) = 1 for any s ∈ S. Now let it be true for every k ≥ (l + 1). We will show first that
V ∗β,k(s) is at most the RHS of (1), i.e., V πβ,k(s) is at most the RHS of (1) for any tail policy
π(k) ≡ (πk, . . . , πN−1). For any deterministic policy π, we have

V πβ,k(s) = Eπ

[
sgn(β) exp

(
β

N∑
i=k+1

ri

)
| Sk = s

]

= sgn(β) exp(βR(s, πk(s))

(∑
s′∈S

T (s, πk(s), s′)Eπ

[
N∑

i=k+2

ri | Sk+1 = s′

])

= sgn(β) exp(βR(s, πk(s))

(∑
s′∈S

T (s, πk(s), s′)V πβ,k+1(s′)

)
.

Thus for a tail policy π(k), we have

V π
(k)

β,k (s) = sgn(β) exp(βR(s, π(k)
k (s)))

(∑
s′∈S

T (s, π(k)
k (s), s′)V π

(k)

β,k+1(s′)

)

≤ max
a

(
sgn(β) exp(βR(s, a))

(∑
s′∈S

T (s, a, s′)V π
(k)

β,k+1(s′)

))

≤ max
a

(
sgn(β) exp(βR(s, a))

(∑
s′∈S

T (s, a, s′)V ∗β,k+1(s′)

))
.
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To show V ∗β,k(s) is at least the RHS of (1), we only need to exhibit a policy π(k) s.t. V π
(k)

β,k

equals the RHS of (1). At time k, choose action

a′ ∈ arg max
a

[sgn(β) exp(βR(s, a))(
∑
s′∈S

T (s, a, s′)V ∗β,k+1(s′))].

Using this policy clearly makes V π
(k)

β,k equal to the RHS of (1). Now, for β > 0, we have,

v∗β,k(s) := log V ∗β,k(s) = max
a

(
βR(s, a) + log

(∑
s′∈S

T (s, a, s′) exp(v∗β,k+1(s′))

))
,

and this differs from the standard case by the existence of a “log” term.
(c) Let the random variable X be defined as X =

∑N
i=1 ri. Let P(X = rj) = pj > 0, j = 1, . . . ,M ,

with r1 < r2 < · · · < rM . Then the term Jπβ (s), when β →∞, can be written as

Jπβ (s) = sgn(β)Eπ[exp(β
N∑
i=1

ri)] =
M∑
j=1

Pj exp(βrj) ≈ PM exp(βrM ).

Thus we need to choose a policy that maximizes the maximum sum of rewards, with max-
imum overall probability. In other words, the chosen policy π must maximize x for which
Pπ[maxX = x] > 0. In case of a tie between two policies π′ and π′′ giving the same value of
x, the policy that maximizes Pπ∈{π′,π′′}[maxX = x] should be chosen. Let V π∞,k(s) be such
a maximum (i.e., equal to x) when Sk = s, and let V ∗∞,k(s) := maxπ V π∞,k(s). It is easy to
derive the following recursive equation for V ∗∞,k(s):

V ∗∞,k(s) = max
a

(
R(s, a) + max

s′:1(T (s,a,s′)>0)
V ∗∞,k+1(s′)

)
.

We define the set S∗k := arg maxs′:1(T (s,a,s′)>0) V
∗
∞,k+1(s′), and the quantity T ∗∞,k(s) :=

maxs′∈S∗k T (s, a, s′). Then, the optimal policy is a deterministic policy π that satisfies πk(s) ∈
arg maxa(R(s, a)+maxs′:1(T (s,a,s′)>0) V

∗
∞,k+1(s′)), and breaks ties in favour of the policy hav-

ing a higher value of ΠN
j=k+1T

∗
∞,j(s).

Similarly the term Jπβ (s), when β → −∞, can be written as

Jπβ (s) = sgn(β)Eπ[exp(β
N∑
i=1

ri)] = −
M∑
j=1

Pj exp(βrj) ≈ −P1 exp(βr1).

Thus we need to choose a policy that maximizes the minimum sum of rewards, with minimum
overall probability. In other words, the chosen policy π must maximize x for which Pπ[minX =
x] > 0. In case of a tie between two policies π′ and π′′ giving the same value of x, the policy
that minimizes Pπ∈{π′,π′′}[minX = x] should be chosen. Let V π−∞,k(s) be such a minimum
(i.e., equal to x) when Sk = s, and let V ∗−∞,k(s) := maxπ V π−∞,k(s). It is easy to derive the
following recursive equation for V ∗−∞,k(s):

V ∗−∞,k(s) = max
a

(
R(s, a) + min

s′:1(T (s,a,s′)>0)
V ∗−∞,k+1(s′)

)
.

We define the set S∗k := arg mins′:1(T (s,a,s′)>0) V
∗
−∞,k+1(s′), and the quantity T ∗−∞,k(s) :=

mins′∈S∗k T (s, a, s′). Then, the optimal policy is a deterministic policy π that satisfies πk(s) ∈
arg maxa(R(s, a) + mins′:1(T (s,a,s′)>0) V

∗
−∞,k+1(s′)), and breaks ties in favour of the policy

having a lower value of ΠN
j=k+1T

∗
−∞,j(s).

4. Let us consider the sequence (.9, .99, .999, .9999, .99999) for the sequence of γ approaching 1. Num-
ber of value iterations were roughly (135, 1350, 13500, 135000, 1350000), with a total running time
of (0.05, 0.5, 5, 50, 500) seconds respectively. The policy iteration had roughly 3 iterations, and had
a total running time to be less than 10 milliseconds, for any value of γ. Clearly, the number of
value iterations move proportional to 1

1−γ , but from simulations, it seems that the number of policy
iterations don’t depend on γ.
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