Homework 4 - Solutions

. T . . .
1. Let w* := argminyex Y ;_; ft(w). Since f; is a convex function, we have

fr(we) = fe(w®) = (V fe(wi), wy — w*) = (Elgr | wi], wp —w™).
Let y; := wy—1 — ngi—1 (hence w; = M (y;)), and thus

1

fr(wy) — fi(w™) = %E[Q(wt — 1) (we — w*) | wy]

% (||wt - W*||2 + E[l[w; — yt+1||2 = Jlw* — yt+1\|2 | wt])
g (e = [+ ElRlr] = o” =i |).
But ||w* — g1 ||? > |w* — wig1]]? since wyp1 = e (ye41), and K is convex. Thus

fe(wi) — fe(w™) < ZL (||w —w H2 +E[77 H9t||2 — flw* — thHQ | wt]) .
Taking expectation w.r.t. w; on both sides, we have

* 1 * *
E[fe(we) — fe(w)] < %E [lwe = w2 + 17219]|* — llw* — wera||?] -

Summing over t = 1,2,...,T, we have

T
th (w)] < JE an 2|+

where the last inequality follows since ||g:|| < G w.p. 1, w1 =0, and D = maxyex ||z

2
Efws —w'] _ 0z D?
2n 2 2n

2. Let us choose states 0 and 1, and choose actions “LEFT” and “RIGHT” for both the states. The
state transition diagram is as in Figure 1. The thick lines in the figure corresponds to the action
“LEFT”, and the dotted lines, to the action “RIGHT”. Thus the state transition matrices for the

actions look like
9 1 37
TrLerT = (.8 _2> , TrigHT = (_1 _9) .

7 - ~

» /

RN P RS s VO
3 \

1 2\
II !
197 W

., S o - \\
R4 ~ - .

17 A 1

Figure 1: State Transition Diagram

Now, let R(0,LEFT) = 1, R(0,RIGHT) = 3, R(1,LEFT) = 2, R(1,RIGHT) = 4. The value
iteration equation for this MDP is

Va(0) = max R(0,a) = R(0, RIGHT) = 3
a€{LEFT, RIGHT}
Va(1) = max R(1,a) = R(1,RIGHT) = 4
a€{LEFT, RIGHT}
V1(0) = R(0 T(0 \% = 4.1,6.7) = 6.7
1() ae{LEFI‘I’Il‘E,lﬁlGHT}((aa)+ 6{201} (,a,s) 2(5)) maX())
Vi(l) = R(1 T(1 V- = 5.2,79) =79
1() ae{LEg‘pI‘E})F({IGHT}((,(1)+ e%:l} (aa75) 2(8)) max())
Vo(0) = R(0O T(0 V; = 7.82,10.54) = 10.54
0= ety RO+ 20 T0.0.9V1(0) = max(72,10.50
Vo(l) = R(1 T(0 V; = 8.94,11.78) = 11.78.
o() ae{LEgll“?)l;IGHT}((1,a) + e%:l} (0,a,5) 1(8)) max(’)

Thus the optimal value function V' (0) = 10.54, and V(1) = 11.78. The optimal policy is to
choose “RIGHT” always.
3. (a) When 8 — 0, we have exp(f8 Zi\il ri)~ 1+ Zi\il r;. Thus maximizing J7 (s) is equivalent to

maximizing sgn(8)E.[1 + Zil r;], which in turn is equivalent to maximizing the reward-to-
go-function V;7(s) defined in class. Thus the optimal policy for low values of [is just

m,(s) € arg max <R(s,a) + Z T(s,a, s’)Vk*H(s’)) .

s'eS

(b) Define the Reward-to-go function as V/J, (s) := Ex[sgn(8) exp(8 Zi]\;kﬂ r;) | Sk = s]. Let the
optimal value function Vj (s) = max V;(s). On the same lines of the proof shown in class,
we will show that

Vik(s) = max (sgn(ﬂ) exp(BR(s,a) (Z T(s,a,s")V 41(s))) . (1)
s'eS
We will show (1) by mathematical induction. The equation is true when k = N, since

Vi n(s) =1 for any s € S. Now let it be true for every k > (I +1). We will show first that
Vi1 (s) is at most the RHS of (1), i.e., V], (s) is at most the RHS of (1) for any tail policy

ak) = (Tky-..,™n—1). For any deterministic policy m, we have
N
Vik(s) = Ex lsgn(ﬁ) exp (5 > Ti) | Sk = 81
i=k+1

= sgn(f) exp(BR(s, m (s (Z T(s,mk(s),s) Ex

s'eS

N
Z Ti | Sk+1 :S/]>

i=k+2
= sgn(B) exp(BR(s, k(s (Z T(s,m(s),s")ik (s))
s'eS
Thus for a tail policy 7(*), we have

Véi;:)(s) = sgn(f) exp(BR(s ﬂ',(f) (Z T(s ﬂ',ik))Vg ;:-:—1(/)>

s'eS

< max (sgn(ﬁ)exp BR(s,a) (ZT s,a,s Vﬁk_H(/)>>

s'eS

< m{?«X (sgn(ﬁ) exp(BR(s,a)) (Z 1(s,a, s/)Vﬁ*,k+1(S,)>) :

s'eS

To show Vi, (s) is at least the RHS of (1), we only need to exhibit a policy) s.t. Vﬁf;:)
equals the RHS of (1). At time k, choose action

a € arg mgx[sgn(ﬁ) exp(BR(s, a))(z T(s,a,s V5 1(5)]
s'eS

Using this policy clearly makes Véi;ck) equal to the RHS of (1). Now, for 5 > 0, we have,

05 4(s) 1= log Vi, (s) = max <5R<s, a) + log (Z T(s,a,5') exp(v;,kms')))) ,

s'eS
and this differs from the standard case by the existence of a “log” term.

(c) Let the random variable X be defined as X = Zfil ri. Let P(X =7;) =p; >0,5=1,..., M,
with 71 <7y <--- <7y Then the term Jj (s), when 8 — oo, can be written as

N M
J5(s) = sgn(B)Ex [exp(ﬂz ;)] = Z P; exp(fr;) ~ P exp(Bra).

i= j=1
Thus we need to choose a policy that maximizes the maximum sum of rewards, with max-
imum overall probability. In other words, the chosen policy 7 must maximize x for which
P.[max X = z] > 0. In case of a tie between two policies 7" and 7" giving the same value of
z, the policy that maximizes Pr¢ (5 7} [max X = z] should be chosen. Let VT ;(s) be such
a maximum (i.e., equal to x) when Sy = s, and let V3 ;(s) := max,; VT ;(s). It is easy to
derive the following recursive equation for V , (s):

Via) = max (Rlsca) 4| o VEea(s))
We define the set S} := argmaxy.i(r(s,a,s >0) Ve k+1(§'), and the quantity T2 ,(s) :=
maxy es;y T(s,a,s"). Then the optimal pohcy is a deterministic policy 7 that batlsﬁes 7rk() €
arg max, (R(s, a) +MaXy.1(7(s,a,5')>0) Voo x11(8")), and breaks ties in favour of the policy hav-
ing a higher value of H§V=k+1T;‘O7j(s).

Similarly the term J7(s), when 3 — —oo, can be written as

N

J5(s) = sgn(B)Ex [exp(ﬁz Z Pj exp(fr;) = —Py exp(fr1).

i=1 j=1

Thus we need to choose a policy that maximizes the minimum sum of rewards, with minimum
overall probability. In other words, the chosen policy 7 must maximize x for which P, [min X =

x] > 0. In case of a tie between two policies 7’ and 7" giving the same value of z, the policy
that minimizes Pre(r r#y[min X = z] should be chosen. Let V™__ ,(s) be such a minimum
(i.e., equal to x) when Sy = s, and let V*__;(s) := max, foo,k() It is easy to derive the
following recursive equation for VZ ok (8):

* max | R(s,a min V* s).

sl —mx (R b min V()
We define the set S; := argming.1(7(s.a,5)>0) Voo 511(8 '), and the quantity 1" o x(8) =
mingesx T'(s,a,s'). Then, the optimal policy is a deterministic policy that satisfies mr(8) €
arg max, (R(s, a) + ming.1(7(s,a,5)>0) Vo x11(5')), and breaks ties in favour of the policy

having a lower value of Hé-V:kHTjoo,j(s).

4. Let us consider the sequence (.9,.99,.999,.9999,.99999) for the sequence of approaching 1. Num-
ber of value iterations were roughly (135, 1350, 13500, 135000, 1350000), with a total running time
of (0.05,0.5,5,50,500) seconds respectively. The policy iteration had roughly 3 iterations, and had
a total running time to be less than 10 milliseconds, for any value of . Clearly, the number of
value iterations move proportional to 1 but from simulations, it seems that the number of policy
iterations don’t depend on ~.

