
E1 245: Online Prediction & Learning Fall 2015

Lecture 11 — September 8
Lecturer: Aditya Gopalan Scribe: Mohammadi Zaki

11.1 Recap
We saw that mini-max regret of the “prediction-with-experts” game occurs in problems with linear
losses. On the other hand, more structure in (CONVEX) losses⇒ improved regret.

11.2 Better Regret for EXP-CONCAVE Loss Functions.
Recall : f : K → R is σ−exp-concave if e(−σf()) is concave.
Example : fi : ∆m → R; fi(π) = log( 1

πi
), ∀i = 1, . . . ,m are all 1-exp-concave.

Theorem 11.1. Suppose D is convex, and l is σ−exp-concave over D, and bounded in [0, 1]. If
EXPWTS(η) is used with η = σ, then for all outcomes/advises,

T∑
t=1

l(pt, yt)− min
i∈[N ]

T∑
t=1

l(fi,t, yt) ≤
logN

σ
.

[Note: Regret here is independent of T !]

Proof: Follow proof of EXPWTS regret for convex functions, but use exp-concavity instead of
Hoeffding’s lemma. Please note that all the notations used here are the same as used for proof of
EXP-WTS as done in the class.
Let |E| = N, (total number of experts).
Define the potential function as,

Φt :=
1

η
logWt

=
1

η
log

N∑
i=1

wi,t

=
1

η
log

N∑
i=1

e−ηli,t .
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Step -1) We find a lower bound for the potential funtion,

ΦT+1 − Φ1 =
1

η
log

WT+1

W1

=
1

η
log

∑N
i=1 e

ηLi,T

N

≥ 1

η
log

maxi∈[N ] e
−ηLi,T

N

⇒ ΦT+1 − Φ1 ≥ −min
i∈[N ]

Li,T −
logN

η
. (11.1)

Step-2) For time t ∈ [T ], consider the per step change in potential, i.e.,

Φt − Φt−1 =
1

η
log

Wt

Wt−1

=
1

η
log

∑N
i=1 e

−ηLi,t−2e−ηl(fi,t−1,yt−1)∑N
i=1 e

−ηLi,t−2

=
1

η
log

N∑
i=1

qie
−ηl(fi,t−1,yt−1)

=
1

η
logE

[
e−ηl(fI,t−1,yt−1)

]
where, qi = e−ηLi,t−2∑N

j=1 e
−ηLj,t−2

and
∑N

i=1 qi = 1.

Now, we use the fact that l is η exp-concave, which means by definition that e−ηl is concave, which
implies,

E[f(x)] ≤ f(E[x])

where f is concave.
Using this property, we get:

Φt − Φt−1 ≤
1

η
log(e−η

∑N
i=1 qil(fI,t−1,yt−1))

=
N∑
i=1

qil(fi,t−1, yt−1)

= l(
N∑
i=1

qifi,t−1, yt−1)

= l(p̂t−1, yt−1).

Summing across t = 2, 3, . . . , T + 1,

ΦT+1 − Φ1 ≤ −
T∑
i=1

l(p̂t, yt). (11.2)
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Putting together eq. (11.1) and eq. (11.2), we get

L̂T − min
i∈[N ]

Li,T ≤
logN

η
.

�

11.3 Application/ Case-study : Sequential Investment
Let us assume there are m stocks in the stock market and we can invest in any number of them.
The game is this: we invest in some stocks on day 1. Then the total returns that we obtain after the
end of the day with those that we invested, we divide them to invest on the second day, and so on.
Rounds : t = 1, 2, 3, . . . (may be minutes/ hours/ days/ months/ . . .).
∀t > 1, we define,

xt ≡ Market vector OR vector of PRICE RELATIVES
≡ (x1,t, x2,t, . . . , xm,t) ≥ 0

xi,t ≡
Closing price of stock i at the end of round t

Opening price of stock i at the start of round t

i.e., an investment of Re. 1 in stock i on round t fetches Rs. xi,t at the end of round t.

Note:
• NO STATISTICAL model on {xt}t≥1.

• Examples of STATISTICAL market models:

– xi,t = e(Zi,t) in discrete time (where Zi,t is a RANDOM WALK).

– xi,t = e(Wi,t) for continuous time setup (where Wi,t is a Brownian motion/ Weiner
process).

– BLACK-SCHOLES model for option-pricing (which won Myron Scholes and Robert
C. Merton the NOBEL memorial prize for Economic Sciences in 1997).

Investment decision on round t,

≡ Qt = (Q1,t, Q2,t, . . . , Qm,t) ∈ ∆m

= {π ∈ Rm : πi ≥ 0, ∀i,
m∑
i=1

πi = 1}
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where Qi,t ≡ Fraction of current wealth to reinvest at time t.
We allow the notation,

Qt ≡ Qt(x1, x2, . . . , xt−1),

≡ Qt(x
t−1)

An investment algorithm Q as a sequence of maps,

Qt : Rm×(t−1) → ∆m.

Assuming UNIT wealth, the final wealth after T rounds is,

ST ≡ ST (Q, xT )

= 1(
m∑
i=1

Qi1, xi1)(
m∑
i=1

Qi2, xi2) . . .

= Πm
i=1〈Qt, xt〉

= ΠT
i=1

m∑
i=1

Qi,txi,t.

Let Q be a class of investment algorithms. Then, the worst-case ratio of wealth earned by algo-
rithm ALG w.r.t. Q :

α := sup
(x1,x2,...,xT )≥0

sup
Q∈Q

log
ST (Q, xT )

ST (ALG, xT )
.

= sup
xT

sup
Q∈Q

log ΠT
t=1

〈xt, Qt〉
〈xt, pt〉

.

= sup
xT

[ T∑
t=1

log
1

〈xt, pt〉
− inf

Q∈Q

T∑
t=1

log
1

〈xt, Qt〉

]
.

≡(WORST-CASE) REGRET in the prediction game where,D = ∆m, Y = Rm
+ , l(p, x) = − log 〈p, x〉.

11.3.1 Classes of Investment Strategies.
1. BUY-AND-HOLD strategy.

- Divide the initial money according to Q1 ∈ ∆m, and then “sit idle”.

∴ ST (Q, xT ) =
m∑
i=1

Qi1ΠT
t=1xi,t.
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2. Constantly Re-balancing Portfolios (CRPs).

Qt(x
t−1) = b ≡ (b1, b2, . . . , bm) ∈ ∆m, regardless of xt−1.

- It turns out that even this basic strategy becomes quite non-trivial !

Example: Consider m = 2 and the assume the two stocks take the following sequence
of market vectors : (1, 1

2
), (1, 2), (1, 1

2
), (1, 2), . . . ,

Clearly, NO single stock gains in the long term⇒ Any BUY-AND-HOLD strategy gives no
profit.
But consider the CRP b = (1

2
, 1

2
), then the total wealth at time t :

= 1(
1

2
+

1

4
)(

1

2
+ 1)(

1

2
+

1

4
)(

1

2
+ 1) . . .

= (
3

4
)T/2(

3

2
)T/2

= (
9

8
)T/2 →∞ exponentially fast.

Aside Note:

If {xt} were i.i.d. according to some distribution over Rm
+ then ∃ a CRP which gives “opti-

mal” asymptotic wealth over time [1].

11.4 Cover’s Universal Portfolio (U. P.) algorithm.
Goal: We want to get low regret against the set of all CRPs (∆m) (i.e., the expert set E).
Intuition “Use EXP-WTS(η)” with η = σ = 1; since logloss is 1-exp concave.

Algorithm : Cover’s Universal Portfolio

1. Initialize : w1(b) = 1, ∀b ∈ ∆m.

2. Loop : At each time t ≥ 1, play

Pt =

∫
∆m

[ Wt(b)∫
∆m

Wt(b′)µ(db′)

]
bµ(db) ∈ ∆m.
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where,

wt(b) = e−η
=1

∑t−1
s=1 log 1

〈xs,b〉

= Π
t−1

s=1
〈xs, b〉

= St−1(b, xt−1).

Next class: Details of Cover’s U.P. algorithm and its regret analysis.
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